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Preface

This book stems from lecture notes for a course in Kinetic Theory I gave
at Indiana University in the spring of 1993. The class was composed of several
of my colleagues from the faculty and advanced graduate students, most of
whom were writing theses in partial differential equations. My goal was to
introduce them to the study of the Cauchy problem for the Boltzmann and
Vlasov equations.

The desired results on both equations are scattered throughout the liter-
ature. Thus one of the purposes of this book is to collect such results in one
place. When these notes first appeared (May 1993) there were no similar texts
available. Since that time, the excellent reference [4] on the Boltzmann equa-
tion has been published. One finds in the literature that the starting point
for many studies (e.g., solutions near the equilibrium) assumes the reader is
familiar with a large amount of background material. For instance, the work
of Grad [13] on the linearized Boltzmann problem is a “given” in many papers.
We have tried to fill in these gaps and unify the presentation.

We claim no attempt at complete generality here. Thus, for instance, when
studying the Boltzmann problem, we treat the “hard-sphere” case whenever
convenient. In the chapter on small-data solvability for the Viasov-Maxwell
system, we assume that cach of the plasma densities is initially small, although
there is a significant generalization [9] to the “ncarly neutral” case in which
cancellation is taken into account,

We begin in Chapter 1 with a study of the collision operator and “crude”
derivations of the equations to be considered. All such equations start with
the Liouville equation. Related material on conservation laws and the entropy
is also presented in this introductory chapter.

Chapter 2 deals with solvability near the vacuum for the Boltzmann equa-
tion. It is an adaptation of the works of Illner and Shinbrot [15} and Polewczak
[21]. This concerns the hard-sphere case; global solutions are obtained for

ix
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“small” Cauchy data (near 0).

In the following chapter we study the solvability of the Boltzmann equa-
tion for Cauchy data near the equilibrium. In order to unify the treatment,
we include here Grad’s computation [13] of the integral operator for the lin-
earized equation. One begins by linearizing about a homogeneous equilibrium,
a Maxwellian distribution of velocities. Then we follow the recent paper of
Kawashima [16]; this is self-contained and elegant. I felt it would be less time
consuming to develop Kawashima’s ideas than to refer to the original works of
Ukai {23}, [24], [25], Nishida and Imai [19] and Ellis and Pinsky [7]. It is shown
that Cauchy data sufficiently near a Maxwellian launches a global solution to
the full nonlinear Boltzmann equation.

In the following chapters we switch to the study of collisionless plasmas
and Vlasov problems. In Chapter 4 we consider the Vlasov-Poisson system.
This has been recently solved globally in time for large data by Pfaffelmoser
[20]. Simpler proofs have since been given by Schaeffer [22], Horst [14], Lions
and Perthame [18] and Wollman [26]. An unpublished variation of the proof of
Schaeffer [22] is presented, which was kindly communicated to me by Schaeffer.

We then turn in Chapter 5 to the Vlasov--Maxwell system. Here, as for the
Vlasov—Poisson equation, a sufficient condition for global classical solvability
is known: that one be able to control the influence of large velocities. This
appears in [11]. However, at this point such a bound has been constructed
only for “small” or “nearly neutral” data. Global solutions to the small-data
Cauchy problem are then obtained in Chapter 6. This material is taken from
[12].

The next chapter concerns the smoothing property of velocity averages and
global weak solutions to the Vlasov-Maxwell system. This is based on work of
DiPerna and Lions [6] as modified by Kruse [17].

In the last chapter we present a particle method for the numerical approx-
imation of the “one and one-half dimensional” relativistic Vlasov-Maxwell
system. Here the phase-space density f is a function of the time ¢, one space
variable z and two velocity variables vy, vo; this is the “smallest” system for
which one has a nontrivial magnetic field. We use a special algorithm from
[10]; it is noteworthy that finite differences are not used to advance the fields
in time. We obtain essentially first—order convergence.

There are many omissions. In particular, we omit the study of “soft” po-
tentials in the near equilibrium solution of the Boltzmann problem (see e.g.,
[2]). The initial--value problem for the spatially homogeneous Boltzmann prob-
lem is not considered. For this and related perturbative results for “weakly
inhomogeneous” problems, see {1} and [4]. The Enskog equation is not dis-
cussed at all, nor are boundary-value problems of any type. The elegant proof
of global existence and regularity for the Vlasov Poisson system, due to Lions
and Perthame (18], is also omitted. Many advances have recently been made in
the study of stability of stationary solutions for Vlasov problems; we refer the
reader to the references in later chapters. Also, we do not include a treatment
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of weak solvability of the Boltzmann problem. This can be found in [5], [8] and
[4]. However, the essential compactness used there is contained in our Chapter
7.

Surely a project of this magnitude is likely to contain errors. I plan to post
a list of errata which may be obtained via anonymous ftp at

iu-math.math.indiana.edu

in the directory pub/glassey. One might also check the URL
http://www.math.indiana.edu/

in the future for further information.

1 wish to thank my class for a stimulating experience. Its members included
Mark Daniel, Xiaoqiu Gao, Sang-woo Heo, Chi Shun Kwong, Raymond Lai,
Gheorge Minea, Hongjie Ni, Ricardo Rosa, Xiaoming Wang, Kang Xue and
Mei-Qin Zhan. I am also grateful for comments from my colleagues David
Hoff, Mohammed Khodja, Shouhong Wang and Kevin Zumbrun.

I wish to specially acknowledge the contributions of my friends and coau-
thors Walter Strauss of Brown University and Jack Schaeffer of Carnegie Mel-
lon University, T am indebted to H. Andréasson, R. Illner and B. Perthame for
constructive comments and to J. Batt for introducing me to Vlasov problems
in 1975. I thank Ms. Vicki Botos and Ms. Mary Jane Wilcox for expertly ren-
dering parts of a (poorly) handwritten manuscript into TgX form. Finally my
family deserves recognition for their patience and understanding in allowing
me to complete this project.

References

[1] L. Arkervd. R. Esposito and M. Pulvirenti, The Boltzrnann equation for weakly
inhomogeneous data, Comm. Math. Phys., 111 (1988), pp. 393-407.

[2] K. Asano and S. Ukai, On the Cauchy Problem of the Boltzmann Equation with
Soft Potentials, Publ. R.I.M.S. Kyoto Univ., 18 (1982), pp. 477-519.

[3] L. Boltzmann, Weitere Studien tiber das Wirmegleichgewicht unter Gasmole-
kiilen. Sitzungsberichte der Akademie der Wissenschaften Wien, 66 (1872), pp.
275--370.

[4] C. Cercignani, R. lllner and M. Pulvirenti, The Mathematical Theory of Dilute
Gases, Springer-Verlag, New York, 1994.

[5] R. DiPerna and P.L. Lions, On the Cauchy Problem for Boltzmann Equations:
Global Existence and Weak Stability, Ann. Math., 130 (1989), pp. 321 -366.

, Global Weak Solutions of Viasov--Mazwell Systems, Comm. Pure Appl.
Math., 42 (1989), pp. 729-757.

[7] R. Ellis and M. Pinsky, The first and second fluid approximations to the lin-
earized Boltzmann equation, J. Math. Pures Appl., 54 (1975), pp. 125--156.

(8] P. Gérard, Solutions globales du problém de Cauchy pour U'équation de Boltz-
mann, Seminaire Bourbaki 699 (1987-88).

9] R. Glassey and J. Schaeffer, Global Existence for the Relativistic Viasov-
Mazwell Systemn with Nearly Neutral Initial Data, Comm. Math. Phys., 119
(1988), pp. 353-384.

, Convergence of a Particle Method for the Relativistic Viasov-Mazwell

System, S.TAM. J. Num. Anal., 28 (1991), pp. 1-25.

(10}



http://www.math.indiana.edu/

xi

(1]

(12|
(13]
(14]
(15]
[16]

(17}

(18]

(19]

(20}
21)
[22)
23]
4]
125)

(26

PREFACE

R. Gilassey and W. Strauss, Singularity formation in a collisionless plasma

could only occur at high velocities, Arch. Rat. Mech. Aanal., 92 (1986}, pp.
56-90.

, Absence of Shocks in an Initially Dilute Collisionless Plasma, Comm.
Math. Phys., 113 (1987), pp- 191-208.

H. Grad, Asymptotic Theory of the Boltzmann Egquation, II, in Rarefied Gas
Dynamics {Vol. 1), ( ed. J. Laurman), Academic Press, N.Y., 1963.

E. Horst, On the asymptotic growth of the solutions of the Viasov-Poisson
system, Math. Meth. Appl. Sci. 16 (1993), pp. 75-85.

R. Illner and M. Shinbrot, The Boltzrmann Equation, global existence for a rare
gas in an infinite vacuum, Comm. Math. Phys., 95 (1984}, pp. 217-226.

S. Kawashima, The Boltzmann Equation and Thirteen Moments, Japan J.
Appl. Math., 7 (1990), pp. 301-320.

K.O. Kruse, Fin neuer Zugang zur globalen Eristenz von Distributionenldsun-
gen des Vlasov-Maxwell-Systems partieller Differentialgleichungen, Diplomar-
beit, Universitat Miinchen, 1991.

P.L. Lions and B. Perthame, Propagation of Moments and Regularity of Solu-
tions for the 3 dimensional Vlasov-Poisson System, Invent. Math., 105 (1991},
pp. 415-430.

T. Nishida and K. Imai, Global Solutions to the initial value problem for the
nonlinear Boltzmann Equation, Publ. R.ALM.S. Kyoto Univ., 12 (1976}, pp.
229-239.

K. Pfaffelmoser, Global classical solutions of the Viasov--Poisson system in
three dimensions for general initial data, J. Diff. Equs., 95 (1992). pp. 281-303.

J. Polewczak, Classical solution of the Nonlinear Boltzmann equation in all R3:
Asymptotic Behavior of solutions, J. Stat. Phys., 50 (3&4) (1988), pp. 611-632.

J. Schaeffer, Global Ezistence of Smooth Solutions to the Viasov-Poisson Sys-
tem in Three Dimensions, Comm. P.D.E., 16 (1991}, pp. 1313-1335.

S. Ukai, Solutions of the Boltzmann Equation, Studies in Math. Appl, 18
(1986), pp. 37-96.

, On the Existence of Global Solutions of a mized problem for the nonlinear
Boltzmann equation, Proc. Japan. Acad., 50 (1974). pp. 179-184.

, Les solutions globales de equation de Boltzmann dans !espace tout entier
et dans le demi-espace, C.R. Acad. Sci. Paris, 282 A (1976). pp. 317-320.

S. Wollman, Global-in-Time Solutions to the Three-Dimensional Viasov-
Poisson System, J. Math., Anal. Appl., 176 (1993}, pp. 76-91.




Chapter 1

Properties of the
Collision Operator

1.1. Kinetic Theory, Derivation of the Equations

By “kinetic theory” we understand a mathematical model in which a gas
is represcnted as a collection of molecules whose motion in “phase space”
is to be analyzed. Phase space is the Cartesian product of three dimen-
sional position space with three dimensional velocity space. We use a sta-
tistical approach and posit the existence of a “velocity distribution function”
f=f(t.x.v) where t>0;z.v€R3 Here f>0, f— 0, |v|] > 0o and the
probable number of molecules which, at time ¢, are situated in a volume ele-
ment r.r+dr having velocities in v, v+dv, is f(t, z,v) dvdzx. The distribution
function f contains an immense amount of information, so one can then use
f to calculate macroscopic properties. Standard references on kinetic theory
include (9], [11], [16], {17], [22], and [31]. For other mathematical treatments
of the Boltzmann equation, sce [10] and [32].

The areas we will study include:

1. Rarefied Gases (Boltzmann equation (1872), [7])
The assumptions are:

(i) the gas is electrically neutral;
(i1) the mean distance between molecules is large in comparison to their
size; 1.e., in comparison to the range of intermolecular forces;
(iii) encounters with other molecules form a very small part of the lifetime
of a molecule; therefore only binary collisions are important;
(iv) collisions preserve mass, momentum and energy.

2. Plasmas (completely ionized gases)

There are essentially two theories: Vlasov (collisionless) and MHD (mag-
netohydrodynamics). Their properties may be summarized in the following
table:
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VLASOV MHD
time scale rapid slow
temperature high low
density low high
collisions ignored very important

Table 1.1. Physical Characteristics of Viasov vs MHD Plasmas

Here “slow” means the fluid motion is slow with respect to the thermal motion
of molecules; “high temperature” means T >>» e?/7 where

—e = charge of an electron
T = temperature

¥ = mean distance between molecules, etc.

As examples we list for MHD fusion reactors and stars. while tyvpical Vlasov
plasmas include the Van Allen radiation belts. nebulae. the solar wind and
(one of the two) tails of a comet.

All equations stem from the Liouville equation:

Df . , . .. _ rate of change along particle
(1.1) Pr material derivative” = paths in phase space RS x RS
Thus
(1.2) Df _ rate of change due = C(f).

Dt~ to collisions

If we call (#,0) the velocity in phase space then by Newton's equations of
motion

(1.3) t = velocity = v

¥ = force = F
and the Liouville equation can be written as
Of+Vaf -2+ Vof v=C(f)
or

(1.4) Of +v-Vof + F-Vof =Cf).

1.1.1. “Derivation” of the Vlasov—Maxwell System. We ignore colli-
sions: C(f) = 0. Plasma dynamics are electromagnetic in nature; hence we
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couple the Maxwell system to the Liouville equation. Let ¢ denote the speed
of light. From the study of electricity and magnetism, we have

(1.5) r=uv
© = Lorentz force = FE + % x B.
Then the Vlasov equation (1946) is
v
(1.6) th+v-\71f+(E+E><B)'vaz().

Maxwell’s equations are

¢ 'Ey =V x B—dnc1j V- -E =d4np
¢ 1By =-VxFE V-B=0.
Here j is called the current density, p is the charge density. Both will be

specified below. In order to see the coupling, we recall that the constraint on
the divergence of F is preserved in time provided that

(1.7) P+ Ve j=0 ((:onservation>
' t r'] =

of charge

Indeed. formally we have

0

EZ(VI - FE —dnp) =V, - Fy — d7py
=V, (Ve x B—4dnj) — 4npy
= —drp — V.- 475 = 0.

Similarly, the field B remains divergence free if it is so initially. Now integrate
the Vlasov equation (1.6) with respect to v: if f vanishes with sufficient rapidity
at x. we get

(1.8) (')f,/fdv+/v-vrfdv=()
because
(1.9) (E+§><B)-va=v,,-[(E+ng)f].

In view of (1.7), this suggests that we take

(1.10) p(t,m)z/fdv
jt,x) = /vfdv.
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Actually we take 2 species: electrons, with density fe, and ions, with density
fi with the electron charge equal to —e, and the ion charge equal to ze (here
2 € N). Then the Vlasov equation takes the form

1
1
Orfi+v-Vafi+ ze (E+ ZUX B) Vufi=0
and in the Maxwell equations we take

(1.12) pze/“;(zf,:—fe)dv
j=e /11113 (zfi — fe)dv.

1.1.2. A formal “derivation” of the Boltzmann Equation. Let the
mass be normalized to unity. Consider a two particle collision, with one particle
having values of velocities in a range dv. the other with values of velocities in a
range du. In a collision, these acquire values of velocities in the ranges dv'. duw’
respectively.

Fig. 1.1 Collisions

Collisions conserve momentum

(1.13) wHv =utv
and energy
(1.14) |u’|2 + |v')2 = |u|? + ||

Now the total number of collisions per unit time per unit volume is taken to
be

f(tav)dv \collision )

—

p

probability any
{the number of particles/unit volume} x { of them suffers a ¢ .
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One takes p proportional to

{the number of particles/unit volume} x {du’ x dv’}.

f(t.;‘ru)du

Thus the

total number of collisions

—_ ! /. d d / /.
(unit volume){unit time) w(', v u, v)f (u)f (v) du dv du’ dv

Here w is determined from analytical mechanics by solving the collision prob-
lem assuming a given intermolecular force. It is also conventional to abbrevi-
ate f(t.r.u) by f(u), etc. From {31] one learns that Maxwell himself assumed
that the probability density for a pair of molecules with velocities v, u at (¢, z)
is proportional to the product f(¢,z,u)f(¢,z,v). This hypothesis is called
“molecular chaos”™ and is recognized to be that of stochastic independence.

Symmetry for u is achieved via the “Principle of detailed balancing” which
asserts that

(1.15) w(w ,v';u,v) = wu,v;u',v').

This is formally discussed in the physics books in the references. Suffice it
to say the following. In equilibrium, the number of collisions (u,v) — (u’,v’)
is equal to the number of collisions (—u', —v') — {—u, —v). This follows from
symmetry of the equations of classical mechanics under time reversal, and is
adopted in nonequilibrium settings also. Thus under such a mapping we expect
to get

(116> ’LU(U’, U,, u, U) = w(—'ua - "U’, —~’U’)
and then the stated result.

1.2. The Form of the Collision Operator

Let two molecules collide. Every such collision transfers it out of a particular
range dv (losses). Given dv. the total number of collisions (u,v) — (v, v’)
with all possible values of u,u, v’ occurring in the volume dz per unit time is

(1.17) dx dv - /w(u’,v’;u,v)f(u)f(v)dudu’dv’.

There are also gains: collisions which bring into the range dv molecules which
originally had values outside that range. Given v, these are collisions (u/, v’) —
(u, v) with all possible u,u’,v’, and
(1.18)

the total number of such

collistons in the volume dzx

— ) et ot ’ ' 1 !
(unit time) dr dv/u(u, vy, o) f(u') f(v') du du’ dv'.
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Therefore by (1.15)

(119 C(f) = / wu, v, ) [Fu) f (o) — £(w)f(v)] duwdu .

Note that ¢ is unchanged in C(f).
For a monatomic gas, we write
du! dv’
(1.20) L do

lo—ul

which is called the differential collision cross section. do contains § functions

S(u + 1 —u—v)- 6 <|Uf|2 4 )2 - fuj2 - Mz)

2

expressing conservation of momentum and energy. Assume these have been
removed. Then do = scattering cross section. One usually writes this as
do = g(w,lu —v|)dw (w € S5?) so that

2y o= [ a0 - ) dodu

Now we obtain the explicit form of v/, /. The conservation laws impose
four constraints on the six variables u’, v'. Thus there are two degrees of
freedom. We write

(1.22) =+ a(uv,ww

vV =v—a(uovow)w

where a is a scalar function and |w| = 1. Then momentum is automatically
conserved. Next we force energy conservation as in {1.14):

(1.23) w2+ |v/|2 = |u|? + a® + 20w - u + |[v|%2 + a2 — 2aw - v = |u|? + |v]?.

Therefore
a?=a(w-v—w-u)

and hence, as long as a # 0,

(1.24) a(u,v,w) =w- (v—u).
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1.2.1. Special Cases of q.
(i) For the hard sphere:

q(w, lu — v]) = boju — v|| cos 8]

where by is related to the size of the ball, w - (v — u) = |v — u|cosé and
0<f<m/2

(ii) For the inverse power law:

g{w, v —ul) = jv — uf7| cos 8]~ qo(6),

where 4 5
s>, y=1—~, v =1+ -
s 3

go is bounded, qo{(f) # 0 near 6 =x/2.

1.3. The Hard Sphere Case

Now we consider in some detail the hard sphere case. Write
(1.25) wiu. viw'.v') = const. S(utv—w —v')-6 ((ju)?2 + |v|? — |2 — [v]2)/2)

where the constant is related to the size of the spheres. Thus C(f) can be
expressed via the formula

c//uwww+m—vv—ﬂMwa«mF+WP-WF—w+v—wmm)mmw

Set A = v — v’ so that
(1.26)

i) = C//[f(l‘ = N f (w4 A) = Fla) f)8 ((u] + o] = v = M? = ju + A)/2) dudh.

Write dA = p?dpdw = p2dpsin@df dg with the polar axis along v — u so that
lul < v —u| and
(' —v)-(v—u)

W —ovllv —u

cos @ =

Denote by A the argument of the delta function above in (1.26). Then

(1.27) 24 = [ul2 + [o]2 — [v — A2 — [u+ A2
= [u? + [v2 = (Jo]* + [AP = 20 A) = (Jul? + [A]2 + 2u - A)
= —2A2 +2(v—u)- A

= 2pu|v — ufcos @ — 2u2.

Now we use the identity from Lemma 1.3.1 below:

(1.28) §({x—a)(z—b) = H%T’[é(:v —a)+6{zx —b)) (a#b)
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Thus
6(A) = 6 ((Jul? + [v]? — o2 = Ju+ v —v'|2)/2)
(1.29) = 6(u? — pjv — ufcosB)
= 6((pu)( — |v — ulcosf))
1

:|—u-_——;)|—|c—os_0|( () + 6(p — |u — v| cos9)).

Fig. 1.2 Geometry of Hard Sphere Collisions

The 6(y1)-term gives 0 contribution because of the presence of the factor
u?dyu. The second term gives the contribution

c

(1.30) | — v|| cos 0]

Ju —v]2cos? @ = |u — v} cosb| (as A = ppw).

Then in the integrand of (1.26)

(L3 fv=A) = flv—|v— u](’oﬂ?w) = flv—aw) = f(1’'): similarly,
flu+ ) = f(u+aw) = f(u)

and therefore
(31 c=c [ [ uvllcosltru ) = flu) f(0)) do du
jwi=1 JR3

is the expression for C(f) in the hard sphere case.
Now we establish the lemma used above.

LeEMMA 1.3.1 Fora #b, ¢ € D= C§(R),

(1.33) (6((z = a)(@ = b)), @) = ——7(4(a) + 0(b)).
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Proof. Let 6 — 6 in D' with . € L. Then
(13)  L=@le-ae-0).6) = [ - o - b)) d.

Partition this integral as
IE = Ié + Ié’

where
&%ﬁ
é=/_ be((z — a)(z — b))o(x) dx
v [ b(@ - o) - b)p(r) d

Without loss of generality we may assume that a < b. Set

b
y=z2-(a+br+ab=(z—a)(x—-b) for :r<—}—
Then y is monotone for suchzand y >0if xr <a; y<0ifa<z < “—’L—b and

dy = [2x — (a + b)] dx. Solving for z. we get

(135) 2zx=a+bt/(a+b)2—d(ab—y)=a+bt\/4y+ (a—b)2

Thus dy = +£1/4y + (2 — b)? dx and hence
a? 5 <a+b—\/4y+(a~b)2> dy
b (y)

1 2

Il =
20 - 4y + (a - b)2
atb—la—b
o (214=1) _ ¢la)
|6 — al |6 —al
We have taken the minus sign because y is decreasing on = < 2% Similarly,

a+b a—b)2
| . ¢( +b+ 4§+( )dy
I =/ s

S S — 4y + (a — b)?

& (a+b+2a~b() _ o(b)
[b— al lb—al

1.4. Conservation Laws and the Entropy
Write

036 QDW= [ [ gl el w) - S0 0)] duds
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Define a related quadratic form as
(1.37)

Q0w =3 [ [ alfeatw)iw)gle) - Fwgl) - F)g(w)] dod
R3S jw|=1
Then Q* is symmetric and Q*(f. f) = Q(f. f).

LEMMA 1.4.1 For all smooth functions f(v), g(v). ¢(v). small at infinity,

/Q (f, 9)o(v)dv

-5 // /q[f D) + Fa)g(v) — Flu)a(v) — F(v)g(u))é(v) dw dud
///q[f vg(w') + F(u)g f(u)g(v) — f(v)g(u)]o(u) dw du dv
= 5///‘1 f(Wg(w) + f(W)g(v') — f(u)g(v) ~ f(v)g(w)](—¢(v")) dw du dv
= %///q[f(v’)g(u’) + f(u)g(v') — f(u)g(v) — f(v)g(u))(~o(u")) dw du dv.

Proof. The first equation is the definition. Switch u,v: ¢ is invariant since
g = q(w, v —vf), and

(1.38) wW=ut(w- (v-u)w—v+(w: (u—v)w=1,

vV=v—-(w- (v—u))w—-u—(w-(u—1v))ws=1u.

Therefore the second equation is true.
Now in the first equation change variables (u, v) + (u’,v'):

/ Q*(f.9)6(v) dv

=5 [ [ et = wnetotu o seaw) + sw)atw)
~ flutw, v)ge(w,v)) = f(o(w v)glu(w. )] dodu’ de.

We will show below that the absolute value of the Jacobian determinant |J| is
unity. Moreover, |u—v|? = 2|u|? + 2|v|2 — |u + v|2 = |u’ — 2'|? so ¢ is invariant.

By definition, v/ = v — (w- (v — u))w; @ = u+ (w- (v — u))w. Therefore
vV —~uw =v—u-—2w: (v~-u))w and thus

(1.39) w- (W —-—u)=w-(v-u) -2w- - (v-u)=—-w- (v-u).
We can invert these to get

(1.40) v=v+(w-(v-u)w=v—(w- (v —v))w =v(u. ).

u=u —(w-(v-uw))ws=u+(w- (v —v))w=u(w. ')
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Now rename (u/,v’) to (u,v) to get

/Q%ﬂmawdv
=5 [ awlo = unlr@sw + rwrae)

—flut+w-(v-—uwwlglv—w- (v —uw)
—flv—w (v - uw)w)glu+w- (v —u)w)dp(v — (w- (v — u))w) dw du dv

[[/ e = u)[f (v)gu) + Fu)g(v)

(v") — f(v")g(w)]p(v') dw du dv

which is the third equation. For the last equation, switch u, v in the third
equation; again v’ — v’, v’ — u’ as above. This proves the Lemma.

Now take ¢ = f in Lemma 1.4.1 and add the four choices to get

/QUwaMv

=1 [ [ [ a0 = Fa)s@)l6) + dw) = 6(w) = 6(w)] dw dudo.
Therefore
/QUfwva=oif¢w0+mwr=am+¢w)

Such o's are called collisional (summational) invariants. In particular, we
can take

(1.41) ¢(v)

1, ¢(v) =v; (j=1,2,3); ¢(v) = |v|2

CoROLLARY 1 : [Q(f, fYdv= [v;Q(f, f)dv = [ |v|2Q(f, f)dv
for j =1,2. 3.

Hence for a solution f to the (BE), suitably small at oo, we have formally

/ fdvdzr = const. (mass conservation)
/ / v; f dvdz = const. (momentum conservation)

/ / fv|2 f dvdz = const. (energy conservation).

For this we simply choose ¢ as above and multiply the (BE) by ¢(v): é(v)fi +
o(v)v- Vo f = o(v)Q(f, f) and integrate.
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Next, we assert the Claim: for f of restricted growth, [ Q(f, f)¢(v)dv = 0 if
and only if there exist a € R, ¢ < 0 and b € R3 such that ¢(v) = a+b-v+c|v]2.
We will give the proof later. Hence, the only collisional invariants are as above.
In [31] this result is called the “Boltzmann-Gronwall Theorem.”

COROLLARY 2 : (Entropy; the H-Theorem) Assume q > 0, f > 0. Then

d 1
. — - > 0.
(1.42) dtf flnfdvd:cQO

Proof. Add the four choices in Lemma 1.4.1 and let ¢ =1+ 1n f:

tfauna+mna= | / alf @) f(w) — Fu) f(0)]

In f(v) +1In f(u) —In f(v') ~In f(v')]dwdudv
] / alf o) f () — f(u)f(v)] I f(u)f(v) —In f(u)f(')} dw dudu

= [[[ sty - s sm HEH. o duay

= [[[ atensnin = win pddu ae

i)
Ffy v

where p = —p)ln p <0 for all > 0. Thus

/ QU H)ln f dv <0

for f > 0. Therefore

%//flnfdvdx://ft(1+ll1 f)dvdx

(1.43) - //(—U-me+Q(f,f))(1 +1In f)dvds
:f QU f)In f dvdz < 0

as desired.

The expression — fln f is the entropy density.

1.5. Relevance of the Maxwellian

Now suppose that [Q(f. f) - In fdv = 0. Since the integrand is of one sign,
we have

(1.44) In f(u) +1In f(v) =1n f(u') +In f(o') a.e.
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Thus if f is positive and continuous

(1.45) ¢ =1In f satisfies ¢(u) + od(v) = o) + o(v').
Hence
(1.46) d(v)=a+b-v+cjy?

and thus f is a Gaussian: f(v) = expla+b-v+clv?) (c<0).
Here is a variational interpretation. Since [ fln fdvdz decreases in t,

and
//fdvd;z, //devdm, / |v|2f dvdx

are constants, the system should tend to

(1.47) inf//fln fdvdzx

subject to the 3 constraints. Use a, b, ¢ as Lagrange multipliers and compute
the Euler equation for the functional in (1.47). The result is

(1.48) %(flnf)—(a+b-v+c|v12)=()
ie.,

(1.49) Inf(v)=a"+b-v+clp)?

or

(1.50) fw) =exp(a +b-v+cp|?) (e<0).

Again f is a Gaussian,

A direct lower bound may be achieved if the problem is restricted to a
bounded domain in position space. Let B C R3 be a bounded set, say a cube,
and consider periodic boundary conditions. Assume that

0< feLY(BxR3), |uv2fe LY(BxR3).

Define
L\{f] = //B » f(In f + Av|?) de d.

A = // fdvdzx,
BxR3

_ {slns s>10
o(s) = :
0 s=10

Let
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Thus
=[] oth+ e dvda

Further, define

pa(v) = cxexp(—=Ajvj2) where /f uydvde = M.
BxR3

It is easy to establish the following Claim:
For all s > 0 and all sg > 0, there exists a point £ between them such that

L (s — s0)?

a(s) 2 solnso +0'(s0) (s = s0) + 3~

Indeed by Taylor’s Theorem we have

o(s) = o(so) + 0’'(s0) - (5 — s0) + %U"(f) (s — 80)2
(s — s0)?

:Soln-9(1+(l+-lnso)-(s—so)+% £

Now min {s,so} < £ < max {s, s} so clearly £ < s+ sg. This proves the claim.

Moreover, we see that this inequality remains true for s =0, sp > 0.
Applying the claim, we have

- 2
o) 2 patngen + (1 + (7 = o) + L 120
L = m)?

=mnpy + (L+Inexy = Mo — ) + 4 .
R A 15

Hence

(f —m)?

a(f) +/\|v‘2f > lL)\ln;j,,\+/\|u|2H.)‘+(l + Ine)(f — un) +% [

Integrating over B x R3 we get

IA[f]_>_IA[,uA]+0+%// Mdvdm.

J Jpxms [ pA
We thus have the following result: Let
0< feLY(BxR3), |v|2fe L1(BxR3).

Then the functional I5{f] is minimized when f is the Gaussian gy as above,
normalized by the constant ¢y.
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The above lower bound on I, [f] leads to the following simple L1 estimate
on the difference f — py:

/fowlf—mldvdz://waafwAy %.Ilf_*/&lzdm

f+mal2

o] [, e

IEHINGES NN

<2M7 - [IA[f( ]—IA[HA]]Z-

Thus we have Ll-stability provided existence can be established in the ap-
propriate sense. The above exposition of this well- known result is due to J.
Schaeffer,

B

1.6. The Jacobian determinant

LEMMA 1.6.1 The Jacobian matric J satisfies

o', v)
1.51 det J = = —1.
(1.51) Ou,v)
Proof. Write
(1.52) W=u+av. =v—aw where a=w-(v—u).
Write J in 3 x 3 blocks:
v Ju,.
1.53 ] = 51_; v, | __ bij — Wiy, Wiy,
( -9 ) YT avl oul | —w;a & 4+ wia :
EL—L —('—)—_l—LJ- 1 UJ lJ 2 ’LL}
7 p)

Now add the fourth column to the first column, add the fifth column to the
second column. and add the sixth column to the third column. Then
wia
1.54 J| = det G i
(1.54) |71/ de [I 0ij + wity, |
Next subtract the first row from the fourth row, subtract the second row from
the fifth row, and subtract the third row from the sixth row. There results

- . Willy,

(1.55) |J] = det [O 615 + wiby |
where b; = ay, ~ ay,. Thus |J| = det (8i; + wib;) whlch is now a 3 x 3 matrix
computation. We compute b; = a,, — 6., = —2w; so that
(1.56) [J] = det(8i; — 2wiwy)

1 -2w! —2wiwe —2wiws

=|-2wow; 1-2wi —2wows
—2wiw; —2wsw2 1-— 2w§

I

(1= 2w?)[(1 — 2w3)(1 — 2w3) — dwiwi]
+ 2wiwe[—2wi1wz (1l — 2wd) — dwiwow?]

— 2wiwsdwiwiws + 2wiwa(l ~ 2w2)].
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After a simple calculation, we get |J| = —1.

1.7. The Structure of Collision Invariants

LEMMA 1.7.1 Let x € R™. Let f be continuous at one point x¢ and satisfy
f@)+ fy) = flz+y) forall =y

Then f(x) = £ - x for some constant £ € R™.

Proof. We claim that f is homogeneous of degree one:

(1.57) flaz) =af(z) forall zeR" acR.

Indeed, assume this temporarily and consider any orthonormal basis {ex}}_;
for R». Let x € R”. Then

(1.58) fl@)y =1 (Z(m : ek)ek) =D fl=-ex)er)
k=1 k=1
=Y (z-e)flex) =a- ) exflex)=a-¢
k=1 k=1
as desired.

It remains to establish (1.57). f is everywhere continuous by

f(0)=0, flz+h)- flx) = f(h) = f(zo+h) — f(xa).

Next, for p € N, f(3F_, zi) = 3.0, f(x:). We take z; = z for all i to get
f(pz) =pf(x). Now weput p - ge N,z — %1‘ D fz) = qf(%). or

/(3)- e

and hence
£(2) =ps (2) = Lrio)
q q q
i.e.,
(1.59) flaz) =af(z) forall zeR*, a€Q.a>0

and thus for all z € R", a € R, a > 0. By hypothesis, f(0) =0 and f(—z) =
—f(x). Hence

(1.60) flazry =af(z) forall zeR® acR.

LEMMA 1.7.2 Let g be continuous and satisfy

(1.61) g(u') + g(v') = g(w) + g(v) forall wu,v e R3.
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Then there exist constants a, ¢ € R and a constant vector b € R3 such that

(1.62) glv)=a+b-v+clvl?

Proof. This is basically the proof from [9]. By hypothesis,
g(u) + g(v) = F(lu]* + |v]?, u +v)
for some function F. Define

(1.63) 9x(v) = g(v) £ g{-v);
Fy(lul2+ [ePPou 4+ v) = F>Jul2 + [vf2ou+v) £ F(Jul? + |v]2, —u — v).

From above, g(—u) + g(—v) = F(|u|? + |v|?, —u — v). Hence
(1.64) g+(u) + g+ (v) = Fu(Jul?2 + |v|2,u + v).

Clearly we have g4+ (—1) = g+ (v). etc.
Put u = —vin (1.64):

(1.65) g+ (v) + g+ (v) = FL(2{v]2.0).
Thus
(IG()) 2g+(1!) = F+(2l'U‘2,U)

so g+ (v) depends only on |¢[2. Write g4 (v) = ((|v|?). From (1.64) then. Fy
depends ouly on [u|? + |v|2 (see the observation below), and hence

(1.67) C(e2) + C(Juf?) = Fy([ul? + [v]?).
Set u = 0 here to get ((|v]2) + ¢(0) = F+(]v|2). Hence
Gl + Juf?) + ¢(0) = Fy(Jul? + v[2) = C(|v]?) + ¢(fuf?).

Set f(|t1?) = ¢(Jv]?) - ¢(0). By Lemma 1.7.1, f(Jv]2) = c|v|? for some constant
c. Thus

(1.68) g+ (v) = C([of2) = F(Jvf2) + C(0) = clof2 +¢(0).

as desired.
For the function g. we have

(1.69) g-(v) +g-(u) = F_(Ju]? + |v|2, u + ).
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First we take u perpendicular to v; then |u + v|2 = |u|2 + |v|2 so F_ depends
on the second argument only. We can write

(1.70) g-(v) + g—(u) = h(u +v).
Set u=0:
(1.71) g-(v) + g-(0) = h(v)
or

g-(v) = h(v)
so that

9-(v) +9-(u) = h(u +v) = g_(u+).

Therefore we are done if u is perpendicular to v.
To avoid this extra hypothesis: let u, v be arbitrary, choose a vector p such
that

(1.72) pru=p-v=>0, |p|2=|u-v (eg., p=zcuxuv)
By the above considerations,
(1.73) g-(v+p) = g-(v) +g-(p)

g-(u ¥ p) = g-(u) F g-(p).

The sign in the second expression is chosen as follows: we take the minus sign
if w-v >0, the plus sign if v - v < 0.
Now

(1.74) (v+p) (uFp)=v-uFv-p+p uFipl?
= 'U-'u,q:lp[? =0

by this choice of sign. Therefore

(1.75)g- (v + p) +g-(uF p) = g-(v +u+ pF p)
because trivially

=g (v+u)+g9-(pFp) {(v+ u) L (pFp).

By using (1.73) on the left-hand side, we get

(1.76) g-(V)+g-(p)+g-(w) Fg-(p) =g-(v+u)+9-(pFp)

If u-v > 0, we take the minus sign: g_(v) + g-(u) = g-(u+v). Putu=1v:
2g-(v) = g-(2v). Hence

(1.77) 2g-{p) = g-(2p).
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Put this in (1.76) using the bottom sign:

(1.78) 9-(v) +2g9-(p) + g-(u) = g-(u+v) + g-(2p).
Therefore

(1.79) 9-(v) + g-(u) = g-(u+v)

so that

g—(v) =b-v for some constant vector b.

Above we used the following observation: in order to deduce (1.67) from
(1.64), we show that no non-constant function of « + v can be constructed
from the arguments |u{? and [v|2. For, suppose that

(1.80) flu+v) = g(lol. uf2).

Put v = 0:

(181) F(v) = g([P,0) = h(jv]2)
hence

(1.82) B+ [2) = h(lul? + Jo]? + 2u - v).

Thus f(u + v) = h(Ju + v|?) inplies
(1.83) h(Jul? + [v]2 4+ 2u - v) = g(|v]2, |u]?).
When u- v =0 and |u|? = t|v]?> we have

the left-hand side = A((1 + t)|v|?);

the right-hand side = g(|v|2, t|v|2).
However, when u = t!/2¢p,

the left-hand side = h(t|v]? + [v[2 + 2t1/2|v]2) = h{(t!/2 + 1)2|v|?),
the right-hand side = g(|v|2. t|v|?).

So for these two different choices of arguments, the right- hand sides are equal,
but the left-hand sides are not. Hence A must be constant.

The case in which the function g is merely measurable can be found in [10].
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1.8. Relationship of the Boltzmann Equation to the Equations of
Fluids

Suppose f = f(t,z,v) is a solution to the (BE). Consider the following “trans-
lation table” in which we abbreviate jix = Jx(t, ) — vg:

Ezpression Name Description
f fdv p(t, x) density in physical space
%f—;}g J(t,z) mass velocity
fvfdv pJ(t,z) | momentum density
[ digef(t,z,v)dv | pi(t,z) | stress tensor
s Jv-vfdv energy density
-21; > pii e(t,z) internal energy

—%— Jjki-jfdv qx(t, ) heat flux vector

Table 1.2. Relationship to Fluids

The pressure p corresponds to % S ipis.sop= % pe. The equation p = % pe
is the equation of state. For a monatomic perfect gas. e = e(T). T =
temperature. Thus by the above, % is constant at constant temperatures. A
perfect gas is given by p = pRT (R = constant).

Now we use the Boltzmann conservation laws to get the fluid equations.
The Boltzmann equation (BE) is

(1.84) ft+v-Vaof =Q(f. f).

Recall that [Qdv = [v;Qdv= [|v]2Qdv=0 (j=1.23).
Multiply the (BE) by 1 and integrate with respect to u:

(1.85) O /fdv—*rVT- /vfdsz.

or l .

(1.86) pt + V- (pJ)=0.
Multiply the (BE) by v; (j = 1,2.3) and integrate:

(1.87) Bf,/vjfdv—’r VI-/-vjvfdvzo.

Now [v;fdv = pJ; by definition and

(1.88) /Ujvifdv‘—‘pij -JiJj/de+Jj/Uide+Ji/l’jfdl‘
=pi; — JiJjp+Jj pJi + Ji - pJ;
= pi; + pJidj.
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Thus

ad d .
(1.89) a7 (P11) + Z o Pid ¥ PTJ;) =0 (5=1,2,3).

Multiply the (BE) by |v|? and integrate:
(1.90) O / |v|2fdv+ V- / |v2vf dv = 0.
Now
(191  eta)= =Y pu= iZ/u- — w2 f dv
: 2p i 2p - i 1
1
- 2 2_ 9.,
% /(,J! + v 2v-J)fdv
1
- = 2 |2 — .
5 [|J| p+/|t| fdv—2pJ-J

- Qip/h);zfdv - —;—IJP.

Therefore
1 1
(1.92) 5 / [v|2f dv = pe + 5”“‘2'
Hence
(1.93) O / [v|2f dv = O (| [2p + 2pe] .

Now to compute [ lv|2v; f dv, write

(1.94) —q; = %/(J,» —v)|J — v|2f dv

/(Jz' ~ Vi) [IJP +hE-23 ijy} fdv

J

BN [

1
= 5Ji [l + (2pe + plJ|2) = 2J - pJ]
1 1
— 5}.]|2/vifdv~ 5/vi!v|2fdv+ZJJ/L'ivjfdv
3

1 1
= dipe = 3ot = 5 [l do ot S ity + pdidy)

7

1 1
= Jipe + 5p|J|2Ji + zj: Jipij — 5 /vz-|v|2f dv.

21



22 THE CAUCHY PROBLEM IN KINETIC THEQORY

Thus

(1.95) 8 {p(e+%[J|2)} Z—— in(e+%lJl2)+ZJ3‘pij+q«; = 0.
J

The five equations (1.86), (1.89) and (1.95) are the five basic equations of
continuum mechanics. These five equations have more than five unknowns. In-
deed, p, e are two unknown scalars, while g, J are three vectors, which provide
six unknowns. Finally, since p is a 3 x 3 symmetric matrix, we have an addi-
tional six unknowns, for a total of 14. However the known relation ), pi; = 2pe
leaves us with 13 unknowns. The “magic” integer 13 will arise again in the
near—-equilibrium study of the Cauchy problem in Chapter 3. We quote from
[31]: “The entire purpose of kinetic theory is to relate the 13 scalar fields ... to
various circumstances of the kinetic gas.” To make these consistent, we need
to impose “constitutive equations” to relate pij.q; to p, Ji,e.

1.8.1. Examples. As particular famous examples, we cite the following:
1. The Euler Equations (ideal fluids)

Take p(t, x) to be a scalar-valued function, and
(1.96) Pij = p(tﬁ.r)(s,‘j._ q; = 0.
Then the classical Euler equations result.

2. The Navier Stokes Equations (viscous fluids)

Let p(t,x) be as above and denote by p. A certain viscosity coefficients.
One takes

(1.97) pi; = plt,x)bi; — (d 8.7:,) - A E
oT
&= —kar,- ’

Then the classical Navier Stokes equations result.
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Chapter 2

The Boltzmann Equation
near the Vacuum

2.1. Invariance of |z — tv|2 + |z — tu|?

The goal in this chapter is to prove global existence to the Cauchy Problem
for small (near vacuum) data in the hard sphere case. We follow {15} and [12];
see also [3]. For the density f = f(t,z,v),t > 0; z, v € R3, we write the
Boltzmann equation (BE) as

(21) ft+'U'vzf:Q(faf)-, f(O,CE,U):fD(IE,’U)

where

arn=o|

SQ

/ w- (v —w)[f(t,z,v")f(t,z, ')~ f(t,x,u)f(t, z,v)] dudw
2 JRre

=Qu(f. f) = Qe(f.f) = “gain — loss”.
Here

(2.2) 51 ={weSt:w-v>w-u}

constant proportional to the area of the spheres

il

)
I}

o~1 = a measure of the mean free path
v =utaw, vV=v—-ow, a=w-(v—u)
w+ v =utv (mormentum conservation)

[u'l?2 + |v'|2 = |ul? + |v|? (energy conservation).

Write Q¢(f, f) = fR(f) where
(2.3)

Rifiit,z.v) =0 / / w-(v—u)f{t,z,u)dudw = 7r0/ lv — u|f(t, x, u) du.
Jr3 J 52 ®3
Appropriate spaces for solution are as follows. Given 3 > 0, let

M = {f € CY([0,00) x R3 x R3) :  there exists ¢ > 0 such that
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lf(t’ xr, U)l < Ce—ﬁ(lxlz+‘”|2)}

with norm
£l = sup e8U=l>+101)| £(¢, z, ).
t.x,v

We also define

X = { f+ [ is measurable and there exists ¢ > 0 such that

|f(t, z,v)] < ce=Bllzl*+ul?) a.e.}

with the same norm. We name the weight function:
p("]j, 'U) = eB(‘Il2+|”|2)_

This stringent decay (which will be imposed on the initial data) greatly sim-
plifies the argument but can be considerably weakened: see [15]. [3].
We introduce the notation

fH(t.z.v) = f(t.x + vt v).
Then the (BE) can be written as

(24) GI8(6,,0) = QRS )t 2.v).

Thus Q#(f, f)(t.z.v) = Q¥ (f. fH(t.x.v) = Q¥ (f. f)(t, z.v) where
Qf(f, = a/ / w-(v—wflt,r+te, o)t r+ te ) dedu
52 JRo
= 0'/ / we (v =W fF e+ to — ) ) fE (o + e —u') ) de du.
s2 JE

Qf(f.f):wo‘f(t.m-l—iv.v) v —ulf{t,z +tv,u) du
JR3

=maf¥(t,z,v) [v — | f# (2 + t(r — u). u) du.
R3

It is the time integrated form of (2.4) to which we will find a continuous
bounded nonnegative solution in this chapter.

Before presenting the details, we offer the following argument (due to Bar-
dos. Degond and Golse [1]) which simply exposes the algebraic device upon
which the proof rests. Given a bounded scattering kernel g, we introduce in
the equation

(2.5) fe+v-Vof =Q(f, f)
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the change of variables f = uF', where y = e—lz—tvl* Thus

(2.6) pe+v-Vepu =0

and

(2.7) e F + pFr + v (FVop + pVo F) = Q(uF, pF)
or

Fr+v -V F = p 1Q(uF, uF)
= it [ [ala) P F(w) = o) F@o) F)] do du
where as before we abbreviate F'(u) = F(t,z,u), etc. Now note that

p(u)u(v') = expl—|z — tv']2 — |z — tu/|?]
= exp[—|z|? — t2|v'|2 + 2tz - v’ — |z|? — t2|u!|? + 2tx - W]
= exp[—|z — tv|? — |z — tu|?]

(2.8) = p(u)u(v).

Therefore
(2.9) Fr+v-V.F= //qe"f‘mlz(F(u’)F(v’) — F(u)F(v)) dw du.
Since 0 < q is bounded, we have for the right—side in (2.9) the upper bound

(2.10) cxsup|fxtﬂ)2/fe—wz«twﬁdu C?;ﬁilgg

(we are ignoring the possible singularity in the u-integral in (2.10) at ¢ = 0).
Under these conditions we have, with Fp denoting data terms,

(2.11) HE (oo < ||Fo(t)]|loo +c/ ”T(j ”; ds.
We sct

(2.12) @)= 51 IF(5)loe.

Then

(2.13) IF () < o+l FO)).

The inequality in (2.13) implies a bound on [|F(t)]] provided that either ¢p or
c1 is sufficiently small. In order to see this, define

(2.14) &(F) =c F2+co— F.



28 THE CAUCHY PROBLEM IN KINETIC THEORY

Fig. 2.1 Small-data Converxity

Notice that @ is strictly convex. Assume that ® has a negative minimum. as
shown in Fig. 2.1. By (2.13), we will have either 0 < F < r¢ or else F > r;.
By continuity, only the former case 0 < F < ro will prevail if this inequality
holds initially. In order to confirm this we compute directly

1
(2.15) (F)=20F-1=0 at F=-—,
2C]
8o that
1 1 1
(216) @n]il]~Cl‘ZE‘21‘+CO*§a~—E+CD<O

for ¢p (or ¢1) small enough.
Turning to the proof of the major result, we begin with a calculus lemma.

LEMMA 2.1.1 Let I = [ e—Bla+T(v—)? dr. Then

T 1
I< /=
VB fo—ul

Proof.
o0 o
I = / e—ﬂ|r+f(v—u,)t2 dr = / e—@[!.ﬂz+72|v—u|2+27'.r-(r—M] dr
0 JO

s
= p—Alzl? / e— 187 lo—uP 218z (v—-u)] ¢
0

With s = |v — u|7 we have

—alZIQ oe _ 2 s Ar—u
e oAl A2 i (e )

Jrr— art

= S.
lv —uf Jo

v—u
v —u]

Write n =

so that |n| = 1. In the exponent here we have

s2+2sz-n=3s+2x-n)s+(z-n)?—(z-n)?
= (s+(x-n)2—(z-n)
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Thus
~Blz|? 00
(217) I - (I) ‘ I . eﬁ(z-ﬂ)2/ e“ﬂ(s'{-(m-q))zds
U - u 0
o0
< L eBlexnl? / e-86de < | . o
v — ul oo B |v—u
as desired.

Next, we estimate the two parts of the collision operator, and show that
the norm on M is “reproducing”.

LEMMA 2.1.2 For any t > 0 and f# € M we have with a constant c
independent of t

/O QE(S. )] dr < coB=2pla,v) 1| f#]
/0 QF S )l dr < coB-2p(z,v)~ | [#].

More generally, abbreviate ¢ = w - (v —u) and, for f,#, f2# € M.t >0, define
Qf(fl,fg) and Qf(fl,fg) as functions of (t,x,v) by

Qf(fi.fa) =0 f | / off bz + tv— ), ) (t 2 + t(v — w), @) dw du
52/Rs

Qf(fl, f2) = moff(t.xv) /R3 v — ulfz#(t,x + t(v — u), u) du.

Then ;
/0 QF (f1. f2)ldr < coB=2p(z, v) 1| FEIISE

t
/0 (GE (fr, f2)l dr < caB=2p(z. )1 | FENNFE L
Proof. By dehinition

(@F (7. 1)t 7,0 =

mo f#(t,. x,v) /Rﬂ v —ulf#(t,z+t(v—u),u)du
< mop(e, o) FAR [ o= ufe A=t g
Thus
/ QA ) dr

¢
< wop(x,v) U f#|2 /R" lv ~ ule—Blul® / e~Bltr(v—wl® dr dy
IR 0

oo
< wop(z,v) I f#|? /‘J jv — ule-Alul® / e—Ala+r(v=u)1* dr du.
J R 0
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The T-integral we recognize as I, and thus from Lemma 2.1.1

t
/ IQF (£, Nl dr < 7320 p(x,v)=15-1/2 f#||2 / e=Alul* du
¢} R3

= iap(z,v) 152 fH?

which is the desired estimate for the loss term. For the gain term, again with
g = w- (v — u), we have

/0 QF(f. )] dr

t
SU/
Q

R e R R R
(2.18) exp [-8(|z + T(v — u)|? + |v'|?)] dwdudr
= ol [ [ oo = wles 800 + )

dr

// gf#¥(r,c+ (v —v),v)f#(r, e +7(v — '), v ) dwdu
52JR?

/0 exp [—8lz + (v — V)2l exp [-Blz + (v — w)|?] dT dw du.

Denote by P the argument of the exponential function in the last line of (2.18).
Then using the previous observation (essentially {2.8)) and the conservation

laws in (2.2), we get
P
D sl - (- )
(2.19) =z + 7o)~ ! + (2 + 7o) — Tu'|?

=2z + T2 + 72(J'|2 + [u|?) - 27(z + Tv) - (v 4+ )
= 2+ of2 + r2([ol2 + [ul?) = 2r(z + 70) - (v + u)
= |(z + Tv) — TV + |(x + Tv) — TU|?

= |z|2 + |z + (v — u)]?.

Now, using Lemma 2.1.1 and the conservation of energy, we find

t
[ 108G Didr < mol#1zpte )1 [ ol -1 -expl-up]dn
< 7 G-2p(z. )V f4I

which is the desired estimate for the gain term. The second part of this lemma
is established in exactly the same manner.

Write f(0,z.v) = fo(z,v). Returning to (2.4), we integrate in time to get

(2.20) f#(t,x,v) = fo(x,v) +/0 Q#(f. f)dr.
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Define the operator F on M by

Ff# = folz,v) + / Q*(f, f) dr

and let
Mrp={fe M:|fll <R}

LEMMA 2.1.3 There exists a constant Ry such that if || fo|| and o8-2Rp are
sufficiently small, then the equation (2.20) has a unique solution f# € Mp,.
Moreover, under the same restrictions on fo and Ry, this equation is uniquely
solvable in X as well.

Proof. The estimates of Lemma 2.1.2 show that if e.g., || fo]] € R/2 and
f# € Mg, then

\Ff#] < plz,v) M foll +2- 738 20p(x, v) 1| f#|2

< p(x,v)-1 [—g + 2 -m33-20R?|.

Thus F maps Mp into itself for R sufficiently small. Explicitly, we require
that 2-738-20R < 1/2. Similarly, we show that F is a contraction on Mg for
suitably small R. Since elements of Mg are continuous, the continuity of F f#
is evident.

2.2. Sequences of Approximate Solutions

It remains to show that the solution just obtained in the first part of Lemma
2.1.3 remains nonnegative. For this purpose we use the iteration of {13] and
[12] as follows. Let T > 0 be arbitrary and let Mp denote the restriction of
elements f € M to [0,T] x R3 x R3. Suppose that there exist uf, f# e M
such that fo(t,z,v) < uolt,z,v) forall 0 <t < T, (z,v) € R3 x R3,

Define two sequences {f;}, {ur} by

d
(2~21) agk#+1 + gk#+1R#(“k) = Q_#(Ek,ék), €k+1(0) = fO

d
Gk o R¥ () = QF (uk we), ks (0) = fo.

Because we have assumed that uff € M, the estimates of Lemma 2.1.2 allow
us to conclude that

(2.22) R*(uo), QY (uo, u0) € L1((0,T), CO(R3 x R3)).

Clearly there exists a solution when k = 0. These are linear ordinary differen-
tial equations; thus if £x_ 1, uk_1 exist on (0,7 then so do k., uk.

LEMMA 2.2.1 Let 0 < fo € M. Assume the beginning condition (BC)

(2.23) 0< () <O <ur(t) <uot), 0<t<T.
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Then the system (2.21) has a unique solution

(2.24) o, uf € Mr

for all k > 1 with the property

(2.25) O (1) < 0e(t) < u(t) < up—1(t), 0<t<T.

Temporarily we assume that the (BC) and the result of the lemma hold
with some u# € Mr. Then there exist functions £, u with ¢, €, ug ™\, u, and
£(t) < u(t) for all t. Now integrate over [0, ] the ordinary differential equations
(2.21) at step k; let k — oo and apply the dominated convergence theorem to
get

(2.26) i (t) +/t (# R#(u)(r)dr = fo+ /t QF(€.6)(r)dr
Ot Ot
u#(t)+/0 u.#R#(E)(T)dT=f0+/O Q¥ (u. u)(r) dr.

This is the separated Boltzmann system. If we can show that u = £, then

f = u = £ will be a nonnegative “mild” solution of the Boltzmann equation
(2.1).

Proof of Lemma 2.2.1. In order to see the monotonicity, we solve explicitly
to get

t t t
(227) gk#(t) = foe~ fo R* (uy _ )ds +/ e fT R#(Ukvl)dSQf(fk-l-(k—l) dr.
0

Thus

t t ~t
(2.28) e (1) = foe‘fo R* (ux)ds +/ e R#(uk)dsQ#((k'{“dT'

0

Assume that for some k > 1
(2.29) Co1(t) < (t) < up(t) < up—1(t)

and subtract (2.27) from (2.28):
(2.30) €#+1(t) . fk#(t) = fo [6* fo R# (up)ds e~ fo R#(uk—l)ds]
t + t
+ / {e* SR ads _ o= ] ""““*-"ﬂ QY (b, ) dr
0

b JRF s [ 4
+/ e Jr - [Qg (Ek,fk) -—Qg (ek—l‘[/’k—l)] dr.
0
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The hard sphere kernel is nonnegative on the set of integration, and from def-
inition (2.3), R(u) < R(v) if u < v a.e. So the first two terms are nonnegative.
By the induction assumption, the last term is too, since ¢}, is monotone. Hence

(2.31) iy < e, ()

and a similar argument applies to the {uk#(t)} We see that each member
of {£#}, {uf} is nonnegative and belongs to My by using the estimates of
Lemma 2.1.2. This proves the Lemma.

In order to simplify the (BC), we take £o = 0 and any 0 < u# e Mpr. We
claim that

(2.32) 0="0(t) < i(t) < ug(e).

Indeed. by the differential equations,

(2.33) %e?‘ + €7 R# (u0) = QF (40, 00)

Dt uf RA (L) = Q3 (wo. ).
Now
(2.34) fo = 0 implies R# (o) = 0, QF (£o,¢) = 0.
Therefore
(2.35) u# = fo+ /: QF (w0, uo) ds,

0< ¥ = foe"-f(: RY (uo)ds fo < utt
Hence the (BC) reduces to
(2.36) ur(t) < uo(t).
2.3. Satisfaction of the Beginning Condition
Write
(2.37) W(v) = supelel® fo(x,v).
P

Sinee 0 < fy € M.

(2.38) Y < coexp(—0FJv]?).

LEMMA 2.3.1 If
o 372R and || foll
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are sufficiently small, then the (BC) holds, and the separated Boltzmann system
has a global solution (£,u) with (¢#,u#) € Mp.

Proof. Since 5 = 0,
(2.39) Uuy (t) = fo +/ Qg (uo,uo) dr
ie., withg=w-(v—u),

(2.40)
t

ul(t,w+tv‘v)=f0(:c,v)+a/// guo(r, z4+7v, 0 Yup(7, x+70,% ) dw du dr.
0 Jr/s?

We will look for ug in the form
(2.41) uo(t, x,v) = v(x — tv,v).
Thus the (BC) holds if

¢
(2.42) o/ / / gtz + 7(v — v'), v )o(z + 7(v — v'). W) dwdu dr
o Jr3 Js2

< ¥(x,v) — folz.v).

Set

(2.43) uo(t, x,v) = 9(z — tv,v) = e~Ble-tvl®y(v)
i.e.,

(2.44) o(x.v) = e~ 3w (v).

Then

(2.45) o + (v —v ), v)o(z + (v —u') o)
= w(v)w(u')exp [-Blz + (v — v')|2 = Bl + 7(v — v")[?]
= w(v)w(uw)exp [—8(Jx|? + |z + (v — w)}?].
We have used (2.19) in the last step. Now we multiply (2.42) by e8l#1*, Thus

the (BC) holds if
(2.46)

¢
Yy +o / / / w - (v — weBlr+T = y(pw (W) du dw dr < w(v).
Jo Jma Js2

We want a nonnegative solution w of (2.46). Using Lemma 2.1.1. we see that
a sufficient condition for (2.46) to hold is

(2.47) w(v) + cr\/>/s / w(v ) w(w) dw du = w(v).
2 Jp3
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To prove the existence of a solution w > 0 to (2.47) consider the space
G= {g € CO(R3) : there exists ¢ > 0 with  |g(v)| < cexp(—6|v|2)}

with norm
lgllc = sup exp(Blv|*)lg(v)|.

Consider the operator T defined on G by
(2.48) T (w)(v) = ¥(v) + e/ / w(v w(u') dudw
R3 /5%

where

(2.49) €= a\/?

We claim that 7 maps a sufficiently small ball in G into itself. Indeed, let
w > 0. Then since 0 < fo € M, T(w)(v) > 0 and

T (w)(0)] < coexp(=8lof?) + ¢ [ [l exp (<3002 + 2] o

< expl=lof) (o + 2neully | expl-plul2) )
= exp(~lef?) (co + 207352 ul3)

Thus for such w
I1Twlle < co+ 207387 2|w||%.

Similarly, for 0 < wi. w2 € G.
(2.50) 1T (un) — T(w2)llc < 20m33-2(|Jwrljc + llwzll¢) w1 — wel|c-

Thus 7 maps nonnegative functions in the ball of radius Ry in G into itself,
and is a contraction there, if || fo|| and c3-2Ry are sufficiently small.

Since 7 is a contraction there we may write w = limn,_.oc 77(w). We
may take T79(w) = fo. Since fo > 0 by hypothesis, the solution to {2.47) is
nonnegative. We have thus found the “starting” function wug.

2.4. Proof that u=¢

It remains to show that u = ¢. Take R from Lemma 2.3.1.

LEMMA 2.4.1 When || foll and 03-2R are sufficiently small, u = ¢ where
u. l are the solutions of the separated Boltzmann system (2.26).

Proof. By definition,
t t
E#(t)+/ 0% R# (u)(7) dT=f0+/ QF (e, 0)(r)dr
0 Jo

t t
u#(t) +/ w# R#(O)(r)dr = fo+ | QF (u,u)(r)dr.
0

D
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Subtracting these equations, we have

(u# —6#)(t) = /0 t[Q#(u, u—0)+ Q¥ (u—0, 0)+0# R# (u—0) - (u# —0#) R# (£)] dr.

Now we simply take norms in M, using the estimates from the second part of
Lemma 2.1.2:

lu — €41l < coB=2 [llu#llju# — ¥ + le#|jur — e#]].

Now u#, {# both lie in Mg, so each of the factors ||u#||, ||¢#| is bounded by
cR. The conclusion now follows when the product ¢3-2R is sufficiently small.

Asin Lemma 2.4.1, we can show that u = £ € X under the same restrictions
on o, § and || fol|. Thus the nonnegative solution just obtained must coincide
with the unique solution f € X obtained from the last sentence of Lemma
2.1.3. Since fo € M by hypothesis, and since M C X, our solutions must
be identical, and the solution f from Lemma 2.4.1 must remain nonnegative.
Summarizing, we have

THEOREM 2.4.1 Consider the integrated form of the Boltzmann equation
(2.20). There exists a constants co, Ro such that if || fo|| < coRo and 03-2Ry
are sufficiently small, then equation (2.20) has a unique nonnegative solution
f# € Mp,.

2.5. Remarks and Related Questions
Polewczak shows in [15] that similar results can be obtained for more general
scattering kernels, and for a wider class of initial data (which demands less
decay at infinity). See also {3] in this regard. Also in [15] classical solutions
are obtained. These are smooth in x provided the data is sufficiently regular.
An open problem is to obtain such a global existence result for the relativis-
tic Boltzmann equation. This equation is described in some detail in Chapter
3. Conservation of momentum remains the same

w4 v=utv

but conservation of energy requires

VIHWE+ T+ = V14 2+ 1+ o2
in contrast to the classical case
[u'|2 + |v')? = |ul? + |v|2.

The appearance of square roots here causes the algebraic device (used e.g., in
(2.8), (2.19)) to fail.
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Chapter 3

THE BOLTZMANN EQUATION
NEAR THE EQUILIBRIUM

3.1. The Perturbation from Equilibrium
We begin by writing the Boltzinann equation (BE) as

(3.1) Fi+v -V F=Q(F,F)
Let p be a normalized Maxwellian

(3.2) p=e

and set

(3.3) F=p+pzf

The goal is to show that initial data which is a small perturbation of u (and
which vanishes at spatial infinity) launches a global solution. One studies the
linearized equation for f first and hopes that it is dissipative (this would be
analogous to the entropy inequality). There is indeed dissipation, but not
on the entire space: there is a five-dimensional space (the null space of the
operator L below) which may prohibit decay in time. For this reason, an
exceptionally careful analysis of the linearized problem is necessary. Now we
compute the equation for f:

(3.4) pefitpiv Vof =Qr (u+u%f,u+y%f)
= 20" (#,N%f) +Q* (N%fs/l%f)
because

(3.5) Q*(p,u) = 0.
(Recall that @* is defined in Chapter 1). Now

20 (e £) = [ [ aluto b)) + ()10
— () () f (1) = p(u)pt (v) f(v)] dw du
— [ [t @ut @t @) + @)

— 3 (v) f(u) = p# (w) f(v)] dwdu.
39
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Thus the equation for the perturbation f is

(3.6) fe+v-Vof + LIf] =T(f, f)

where

T(f, /) =p"50)Quif,pusf)

(37) L[f] = —ZIJA%(U)Q*(N»N%f)-, or
Lif} = v(v)f - Kf,
K=Ky - K,
with

(3.8) v(v)= // g(w, |v — u|)p(u) dudw = the collision frequency,
K0f = udo) [ [ afwnlo = b (@) ) dud,
Kof = [ [ atnlo = i )ld () F0) + 2} () 0)] o
The integrand here in K2 can be written as

quz (v) - [ F (s (u)ps () fu) + p? (w)ps () f(v)]
= qut (v)p(u) [ (V) (Wp (o) f(W) + pE (0)pm  (u)pd (w) f (7))
= qu2 (v)p(u) [~ F (W) f(u) + u= % () f (7).

Therefore

(3.9) Kof = pd(v) / / gl fu— o)) () F )+ = () f(v)] o d.

We emphasize one important point: Grad [31], Kawashima [38} and others
normalize the Maxwellian p as

p= e~z l‘u{
Thus the exponents differ by a factor of 2.

3.2. Computation of the Integral Operator

Now write

(3.10) K,-f:/k,-(u, O fw) du  (i=1,2).
Clearly,

(3.11) k(. 0) = ud (w)pk (v) /,u,|=1"(“’"“‘“')d“’
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and hence k; symmetric, but the computation of k7 is not so simple. We follow
Grad’s computation {31]. In order to conform to Grad’s approach (which has
become standard), we change notation slightly to more explicitly indicate the
arguments of g. Write

(3.12) V=u—uv,

(3.13) Ww=utaw=u+(w-{v-u))w=u—(w- Viw,
v=v-—aw=v—(w-v-u))w=v+ (w Vw.

Take polar coordinates with V as pole:

(3.14) w = (sinf cose,sinfsine, cosf) so that
# = 0 corresponds to head--on collisions,

0= 72_r corresponds to grazing collisions,
and thus
(3.15) wwuqvmmao<6<g,oge<2n

and we write collision operator in the form

61 QU= [ [[irwrre) - 1w se)se. V) ddedn
As special cases we mention the hard sphere, with diameter by for which
B(8,1V]) = bg|V|sinB8cos b

and the inverse power law for which

(3.17) B(6,|V]) = [V} B(6).
Now write
(3.18) V=V ww+(V w)ws (wp L w).

Consider a rotation w — w;. Then

W=u—(w- Viv=u—-v+v-—(wv Vw
=v+[V-(w Vw=v+{wy - V)wy
=v+ (wx (V xw)).

Thus under a rotation of w through 7/2,

(3.19) Oﬁg—&eﬁeiﬂ
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we get u/ — v/. Similarly v/ — /. Hence such a rotation simply interchanges
u,v’. Set

(3.20) B*(8,|V]) =

[

[B(o, |V|) + B(g _ 4, |V|)] .

Then

G2 Kaf =230 [ [ [ 035080 VDt a0 ded

because such a rotation has unit Jacobian.
Next, note the map (u,v) — (u/,v’) is invariant under w — —w, i.e.,

(3.22) 6—m—0
E—ekm

cosf — —cosd

sinf — +sind

sine — —sine

COSE — — COSE.
Thus we can extend B* to (0, 7) using
(323) B*(W“G:!VD = B*(97|V|)

Then we can integrate with respect to @ as

(3.24) é /0"(- ) de.

B
] sin @]

Now w ranges over a full sphere. Let Q =
V = u — v, we can write

. Then, after changing v —

(3.25)  Kaof = p2(v) ///u"%(v')u(u)f(v')Q(IV]cosH,|V|sin0) dw dV.

We write the arguments of Q as above for convenience, as will be seen directly.
Decompose

(3.26) V=WV ww+(V-(V- ww)
={+w

where

(3.27) E=(V-ww, w=wx(V xw).



THE BOLTZMANN EQUATION NEAR THE EQUILIBRIUM 43
Then
(3.28) Q = Q(V] cos6,|V|sin ) = Q(¢], |wl).

In (3.25) we will integrate with respect to w first, then £, then w. One in-
tegrates first over the plane w (which is perpendicular to w). Then we combine
the one-dimensional £ integration in the direction w with the integral over w to
get a three dimensional integration of |€|w = £. There is a factor of 2 because
in the three-dimensional integral with respect to £ we have —oc < & < oo.
Thus we have

(3.29) dV = 2dwd|€|.

For fixed w the change of variables V' — (£, w) is a rotation with unit Jacobian.
Hence

g2 dl¢|dw  2dE dw

(3.30) dwdV = dw-2dwd|¢| =2 dw 5 = 5
14 14

Then

(3.31) vV=v+(w-Viw=v+¢§

u=v+V=v+{+w

and

' -} o ) dwdf
(3.32) Kof =243 z>///; (0-+ €l + € +0) 0+ QUEL o) Tt
Let
{(3.33) n=uv+E, C*l(v+n)
Then
330 Kof =22 [ [ [ 3ot + w) )@ = o, ) dw Ty
Now
(3.35) 2 (V) 2 ()p(n + w)

has in the exponent

(336 — gl gl It w = ol 2w Sl ~ ful.
2 2 2 2

But

1
(3.37) w-(=—2~w-(v+77):%w-(?v-{—é):w-v
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because w - £ = 0 by definition. Hence
(3.38) w-n=w-v whichimplies w-{=w-7.

Thus this exponent is

(3:39) ~ Sl = 2w = Z12¢ o ~ fuf?

1 1
= —§|v|2 —2w-C—-21C12+2¢ v —|w? - alvl"’
=~ (P~ ol — P +2¢ v
1
= —|w+([? ~ Z|U - nl?

=+ (P2 - 7€
Therefore
(3.40) Ksf =2 / e= 5 e~ +< f() Q1 — v, |w]) duw 7 i"_v,z
so that
(3.41) ka(v,n) = ™ —2v|2 -Yn—vf? /e—lw+C12Q(jn — o), |wl]) dw.

Now resolve

(3.42) (=(C-W)i+G=G+C. G- G=0, itzi%_
Then
2 2

3.43 2 = _ ((7]-—1))-(17+1;))
( ) i (|§| ) (2151 1+n) 2ln—vl

_ (2 = )?)?

T4 n—vf?

and
(3.44) [w+ |2 = [ + ¢ + Gf?

=G 4w+ Gf? +2G - (w + (2).

But (1 - (2 = 0 by definition, and {; - w = 0 because (1 has direction £, and
£ - w = 0. Hence

(3.45)
2 pl24 1 Uni2=ju?? 2 ~
kalon) = e [ emtret @ - ol jui) du.
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3.2.1. The hard-sphere case. Now let us specialize to the hard—sphere

case:

(3.46) B(0,|V]) = bo|V|sinfcos b, so

(3.47) B(g —0,|V|) =b0|Vlsin(g—9) cos(g —9)
= by|V|cos @ -sinf = B(9,|V]).

Thus

(3.48) B*(0,|V]) = B8, |V])

so that

(3.49) Q(IV|cosh,|V]sing) = bo|V|cosh, ie., Q(lv],|w]) = bolo].

Now using this we compute (recall that S? was defined in Chapter 2)

(3.50) ki(v.u) = pt(v) y qlw, [v = ul)p (u) dw
wl=1

= u%(v)[;z bow - (v —w)pt (u) dw

/2
= bop? (v)p (u) - 27r/ [v — u|cos@sinfd df
0

= 7ho|u — v| exp {~%(|u|2 + |v|2)} .

v(v)

v

Fig. 3.1 The Collision Frequency v(v) and its linear bounds
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Similarly,

u(v>=f/ w, o = ul)a(us) du du

= ’R'b()/l'v — uje=1u’ du

i

wbo/§z|e‘|z+”‘2 dz
=ﬂboe"“|2/]z[e“'zlz‘zz'”dz

o0 ki3
=27r2boe“|”‘2/ r3e‘r2/ e~ 2rivlcos® gin @ 40 dr
0 0

_7-2
— 2 —ll? = rle " _d_ —2riv]cos @
2rw2bge e do
o 2rfv|l Jy df

2 | 12 g
R L

2 o0 oo
_ 7o / 2l _A/ r2e—(r+v))? dr]
lv] 1Jo 0

= b /OO (z +|v])2e—2" dz — /Oo(z — |v})2e—2* dz]

|
i |/ N

2p [ /1 o
e | e—z2{<z+|v|>2—(z«\vl)?}dz]
L ~|v] |v|

o0

il .
= — |2 / (|v]2 + 22)e=2"dz + 4 |v|ze'z2dz]
Jo

o

m2bg vl 2 —|1v|6‘|"|2 1 5 2
=— |2 v|2/ e"rdz+2¢ ———— + -—f e~ dz p + 2Jvle~ 1t
|v| | 0 2 2 Jo

fl
= m2by [(QM + B l) / e—*"dz + e”lt’lz} .

This is the explicit form of ¥(v) in the hard—sphere case. In order to express
ka(u,v) we need

(3.51) / e~lw+GIP Q(ln — v|, |w|) dw = boln — vl/ e~lw+l day
R2 R2
= |p — v| - who.

Therefore

(3.52) ka(u,v) = lj—ﬁ—f)%l exp [__llu — w2 — %('UE : [:{'22)2] .

and thus k2 is symmetric. Notice that neither k; nor k2 is a convolution
kernel.
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This calculation was first done by Hilbert in 1912.
3.3. Estimates on the Integral Operator

3.3.1. Bounds on the Collision Frequency v(v). From above we have
(3.53) v(v) = c/ [v — ulpu) du

for some ¢ > 0 and p(u) = e=lul*.

a) We have the pointwise bounds (see Fig. 3.1)

(3.54) 0<vp <1+ ) <vv) <ve(l+ o))

for all v. Indeed, we certainly have

(3.55) v(v) < c/([z:[ + Ju)pe(u) du < v (1 + |v])
everywhere.

For |v| > 1.
(3.56) v(v) > exju>1 / Hol = Jul| (i) du

> exigen [ el = fullut) du
ful<1/2
1
> Cx‘lvlzl/ (Ivl - 5) p(u) du
ful<1/2

> ey

In the set [v] <1 we can write

(3.57) v(v) > c/ |Ju] - fol|pe(u) du > c/ w(u) du > 0.
Jlul>2 [uf>2

b) (Monotonicity in the radial direction)

We have

(3.58) > 0.

0
é’l—b“ll/('())

For, from definition

(3.59) 1—/7}%0—) = /IU — ulp(u) du.
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Thus
0 u(v) Ui — Uq
3.60 —L = d
( ) Ov; mhg lv — u[”(u) b
so that

1 Ov(v) v; 1
mbo O] Z|u|avz 'nbc{

|v|/v s

=) e

= ﬁ/ / |z ‘2| ”ZICOSG —~ e (2~{2(2+2[U[lz{r050Sinedgdlzi'
viJo

Now denote by A the angular integral appearing here, and write a = 2|v||z|:
"
(3.61) A= / e2lvlizlcos 8 gin @ cos 6 df
0
/2 b
= / eac0s gin B cos 0 dO + / e?cos05in g cos O df.
0 Jaf2

In the second integral let ¢ = 8 — 3. Then we get

/2
(3.62) A= / (eacosd _ p—asind) cos @ sin §.d > 0.
0

3.3.2. Bounds on the Kernel. We know that

(3.63) kl(‘ll-. U) = clu — Lv|€—§(|u|2+lu|2)'

Thus

(3.64) /fﬂ(u,v)du <e /(|u| + Jefye BUulP+HER) gy
< el + Jo))e= 5N
< ~1|?
<cem 3V

Similarly

(3.65) /k%(u,u)du <c /(|u| + e])2e= (> +vl) du
< c(1 + [o[2)e- I

115,02
< cemilvl,
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Hence

(3.66) sup [kl(u,v) du < 0o, sup /k%(u,v)du < oo,

T

Clearly we have

C 1 2
3. k < — s lu—v|
(3.67) 2(u,v) < Py U|e
and hence
(3.68) sup /kg(u, v) du < oo, sup/k%(u, v) du < 0.

LEMMA 3.3.1 Let o > 0; then for k = ky + ko,

(3.69) / R 0)[(1 4+ u2) =2 du < o1 4 Jpf2)~EletD).

Proof. This is easy for kq:
(3.70)
/lkl(u,v)lu+|u|‘2>-f~/2du

=¢ /(“ — vl 2UPHEEN (T 4 jf2)=0/2 d

oy
{lul<le]} {luf>|v]}

< cfvje=$1” / e~ 30 (1 4 Juf2) =0 2 du + e(1 + Jof2)-o/2e~ HI0T? / fue 141" du

11,2
S Ce_.'illl

which is more than enough for large |v|. The small |v| case is addressed below.
For ks> we have

3.71 ka(u. v))(1 2)-a/2 Jyy < 2
(3.711) /| 2w v (1 + Jul?) u < c/ e — o)(1 + [uf2)o/?

Y
Hu—v> 5 Su—vj< By

Z

=h + L.

du

Now

e % |u—u|2 e

(3.72) L1 < / dugcv—le“ﬁ%""'z
S o1/ i
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which is more than enough. The estimate for small v} is done below.
For Iz we write

(3.73) [ul2 =[] =1{u —v|2 +2v - (u —v).
Set

(3.74) r=fu—vl v-(u—v) = rlv|cosb.
Thus

(3.75) (Ju|2 = |v|?)2 = (r2 + 27|v) cos 8)2.

On the set |u — v| < 1;—' we have
(3.76) fu| > o] = lu—v| > |v|/2.
Therefore

o0 ™
(377) [2 S C(l + |Ul2)—-a/2/ ,re_r?/fl . 271-/ e—;l,'(r+2|v|cos(9)2 sin 6 .do dr.
0 0

Change variables by
1
w = §(T + 2|v| cos 8).

Then
- r+§ll'l
(3.78) / e~ 1 (r+2vleos)* gin g g = ]vl—l/ el e~ dw < clv]-1.
o =gl
Hence
(3.79) In < (1 + |v]2)~2/2 ol -1,

This proves the Lemma for large |v].
For the small |v| case, let [v| < 1, say. Then

(3.80) /lk(u.v)\(l + u2)—a/2dy < sup/\k(u,v)] du

<c

C a-tl
= {1+ ¥]2)
(1+[vf?)
c
ST e

(L+jof2) =

as desired.
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3.4. Properties of L
Recall that

(3.81) LIf) = v(v)f - K]
where
(3.82) = Kz — K,

Kif = / (u,v)f (i1=1,2).
Also, the equation for the perturbation f is
(3.8 fit vV + LU = wo 2(0Q" (u £k f)
where
(3.84) L{f) = —2Q (mubf) - u1r2

Recall from Chapter 1 the identity

(3.85)/Q*(Fg G)o(v) dv
-3 / / / 9F(V)G') + F()G() - F(1)G(v) = F(v)G(w))¢(v) dw du do
oF / / / alF()G() + F)G() = Fw)G(v) = F()G(w)lé(u) dw dudv
- %///"[F(”’)G(“')*F(“')G“’ F)G() - F)G(w)(~$(v)) duw du dv
= %/// AP )G) + Fd )G (') — F(u)Gv) — F(u)G(w)])(=d(u')) dw du dv.

Symmetry is an easy property because we already know that k;(u,v) =
ki(v.u): hence

(3.56) [ tigiao= [ Lifjaw
provided
(3.87) f.oeD(L)={feL?: L[f]e L)}

Next, assuming ¢ > 0, we claim that L is non—negative: by (3.84), this is
equivalent to

(3.88) / 13 FQ  (u,pd Y dv < 0,
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Add the four choices in identity (3.85) with ¢ = u‘%f to get

/ 20" () F(0)Q* (w2 f) dv

/// Q[u(v')u%(u’)f(u’) + p(u )t (V') - ()% (u) fu) — H(U)u%(v)f(u)]-
™2 @) () + pF @) F@) — 1™ E @) F) = p7 ) ()] d dud

= //f a0 u(u )™ (@) f(u') 4 p~E () ) — pmF () flw) - 3 (0) F(0))-

™2 @) + R @) = i ) () - i E () ()] d dudo

- / / / ()™ 2 (@) FO) + pE @) F) ~ p @) 7 (@) ~ p F () f(w)]? dw du dv
<0

Of course we can write

Il
=
|
=
0
=
—
>4
—
=
N
—_—
C\
S
~
—_—
<
\:
+
=
—_—
=
—
=
o
——
-~
S
~

Suppose that, for i = 1,2, 3,

1
(3.89) p 2 (u) f(u) = [ u; } (a H-vector)
juf?
ie.,
1
(3.90) flw =p2) | w |.
|uf?

Then L{f] = 0. In fact, [ fL{f]dv = 0 if and only if f is a linear combination
of these quantities, i.e., if and only if

(3.91) f(u) = p2(u)(a+b-u+ cul?).

For, we have seen above that

(3.92) / FL[f]dv > 0
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for all f, and that the integrand in this expression is of one sign. Hence

(3.93) / fL[f]dv =0 if and only if

p=E @) F(V) + "2 (W) f(w) = pmF () f(u) + pm 2 () f(0) ae.
Set
(3.94) g(u) = =% (u) f(w);

then this says that g is a collision invariant:

(3.95) g(uw') + g(v') = g(u) + g(v).

From earlier considerations, f must be as given in (3.90).
Hence the eigenvalue A = 0 of L has a 5—-dimensional null space spanned
by

1
(3.96) nr(v) | v
|v]?

If there are any other discrete eigenvalues, they must be positive since
(3.97) / FL{f] dv > 0.

for all f € D(L). This follows from the spectral theorem as applied to the
self-adjoint operator L.

Denote by K(®) the n'th iterated integral operator, with K() = K. Car-
leman [11] showed that K(?) is compact for the hard sphere model. Grad [31]
showed that K3 is square integrable for more general ¢, and hence K is com-
pact. Now the spectrum of the self-adjoint operator f — v(v)f is continuous
and coincides with the range of v(v); thus it is [vo,oc) . By Weyl's Theorem,
the essential spectrum of v(v) — K is the same as that of v(v). (The essential
spectrum is the set of accumulation points of the spectrum; equivalently, it is
that set which remains after excluding from the spectrum all isolated points
which are eigenvalues of finite multiplicity.) See [37] (p. 244) for a statement

of a generalized Wevl’s theorem. Therefore 0 is an isolated point eigenvalue of
L.

LEMMA 3.4.1 Assume
(3.98) //ﬁ%fdv = /u*év,-f dv = /,u”r%lvl?f dv = 0.

Then there is a u > 0 such that

(3.99) [runezu [ ra
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If there are any discrete eigenvalues between 0 and 14 (to which correspond
the eigenfunctions above) we take pu = smallest of them. Otherwise, we take

M = lg.

3.5. Compactness of K
Write k = |k1| + |k2|. First we note that K is bounded on L2 via

(3.100) K f(v)] < /kl/Q(u,v) k2w, v) f(u) du

< (/ k(u,v)du)l/2 (/ k(u,v)f2(u)du)l/2

(3.101) K fiI3 < [Sl /k(u,t,')du} . //k(u.v)f?(u)dudv

< [s‘ilafk(u.z,!)du] {sgp/ (u.v) d?} 112

Consider an integral operator

Therefore

(109 T/ = [Kwoftde T = [ k(e du
Let Q, = 4, N B, where

(3.103) Av= (@) w2 ) Ba={(wr):fe] <0

Let xq, % = #n, a cut-off kernel.

LEMMA 3.5.1 (DRANGE [21]) Assume that k(u.v) > 0. T is compact on
L2 if
(i) [ &(u.v)dv is bounded in u:
(i1) k € L2(Q,) forall n:
(iii) sup, [(k — Kn)du — 0, n — .
Proof. By (ii). T, is compact on L2, Now we claim that (i) and (@) imply
that ||, — T'|| — 0. Assume that the claim is true. Then T', as a uniform limit

of compact operators, is itself compact.
Now

2

MT~nww=“/Mer«mwmvau

- / U(K - Kn)f(-u.)du]z dv
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< / [(/(h— - nn)du)l/z (/(H - nn)fQ(u)du>1/2]2 dv
- / (_/(n — kn)(u,v) du> (/(n — ffn,)f?‘(“)du) dv

35

< Sll‘[)/(h' — Kn)du -/fz(u) { /(KZ - nn)dv} du (Fubini)

< Sllp/(h‘- — Kn)du- sup/Kdv JIfI1E (because ky, < K)

u

< oD fii.

This proves the claim and the Lemima.

Now recall that ky is easily L? in (u.v), and that

2,22
€ —llu—vPe sl )
lu— vl

(3.104) ko(u.v) =

Then (1) and (i) above clearly hold. Write k = k2 and

(3.105) /(k —kn)du = /(k —-xq,k)du = / kdu
Jo
= / kdu = / kdu
J(ANB,) AcuBg
= / k du.
{(uv)u—v]< L YU {(u.v):|v]>n}
Thus
(3.106) sup/(lf —kn)du < Sll[)/ kdu+ sup /k‘du.
v v Suju—v|< i} |'U|g"
Now
~flu—v? g 0
(3.107) / kdugc/ f—-‘-————'fgc/ rdr—0
Ju—v|<d lu—v]< i Iu - ’UI 0
and
(3.108) sup /kdu <0
Jul>n n

because we showed in Lemma 3.3.1 that

(3.109) /(1 + |u|?2)=2/2|k(u,v)| du < (1 + |v|2)~+a)/2 for all a > 0.
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3.6. Solution Spaces
Write (&) = /1 + |£]2. We define for £ =0,1,...and 8 > 0

1/2
HY(R3) = {u € L2(R%) : flulle = (/w (E)”\ﬁ(f)l?dé) < OO} ;
LE(R3) = {u € LP(R3) : (z)fu € LP(R3)}. with norm |ulp 5 = ||{z)%u L».

Here 1 denotes the Fourier Transform of u. Note that L?f C L?,, for 3> 3+ %
Indeed, assume that v € L, i.e.,

(3.110) ()Bue e, §>8+ g
Then
(3.111) ul2 = / ()28 w2 dr = / ()23u? - (£)209' -3 do

dx
< sup((z)7ul)? / a5 S clul% 5-

In particular,

(3.12) lulls < clulsos. 6> 5.

Define further

(3.113) Ly(®R?) = {ue LF(R?): lim |(1 = \r)ulx.s = 0}

where x g is the characteristic function of {|z| < R}. The norm is the same.
Spaces in z, v are similarly defined:

(3.114) Bg = Ly (v; H(x)), withnorm | f{les = Slip(U)ﬁ“f(u My

Similarly,

(3.115) BY = Ly (vi H(x))

with the same norm. Note that all norms are taken first in z, then in v.
In the previous estimates (3.66), (3.68) we have shown that

BA16) 1K o = suplKI@)] = sup [ Ir(as o)l ()] du

1/2
< sup ( [#eto) du) 1l < el fllze.

ki
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Moreover, recall from Lemma 3.3.1 that
(3.117) /lk(u, v){u)~edu < cfv)~let) (@ >0).
Therefore for 3 > 1,

(3.118) |K floa,s = sup(v) 7| K f(v)]

I

sup /[k (u,v)|[f(u)| du

[l

SU})(U VB /|k u, v)[{u)P- L f(u)] (u) - B-1) 4y
< sgp(v)ﬂ [s:p(u)ﬁ-llf(U)l ./|k(u,v)|<u)—(g_1)du

< cesup(v)? - | flacs—1 - {v)—8

< le‘oc.ﬂ—l-

3.6.1. The “dot” spaces. Why does one need the “dot” spaces? These are
required to show that certain semigroups are strongly continuous. Consider
for instance the space BY = Lgc(u, L?(z)). For t > 0 consider the semigroup
U(t) defined by '

UBf) (x.v) = f(z —tv.v), feBY

We claim that ¢t — U(t) f is strongly continuous from R+ into Bg. Indeed U(t)
is bounded because

MU @ flllo.s = sup < v > [If(- = tv.v)llzz = [l flllo.s-

In order to show the strong continuity, we consider t — 0+. For any R > 0 we
have

MU = flllo.s =sup < v >Ff(- ~tv.v) = F(0)lez
< sup <v >0 ”f( - tvvv) - f("1))“[,§
lei>R

+ sup < v >0 f(- —tv,v) = f(, 0|12
|lvl<R ’

=1 +U2.

For U, we have the estimate

Upr <2 sup <v > [f(,v)f.2
lv|>R
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and thus U; — 0 as R — o¢. For any large but fixed choice of R, Uy — 0
as t — 0* by integration theory (since v is bounded in the expression Us).

Therefore U(t) is strongly continuous as claimed. By the Hille-Yosida theorem,
the infinitesimal generator A of U{t) has dense domain D(A) and

(Af) (z,v) = ~v -V f for fe D(A).
3.7. An Orthonormal Basis for N(L)
We know N (L) is the linear span of {p1/2¢1, ..., u1/2e5} where
(3.119) Y1 =1 ¥jy1 =75, 7 =1,2,3; ¥5 = |v|2

What follows is a straightforward calculus computation. A relevant integral is

= 1. (2n—1)
(3.120) /0 z2me—az’ dp = 3 2n+1ann [ (r=0,1,...).

We begin with

(3.121) /udv = /e""|2 dv = m3/2,
Set

1/2
(3.122) 1 = %

Then {le1ll2 = 1. Next, compute
[o] 2w pm
(3.123) /v%u dv = / rie~? dr/ / cos? §sin® ¢ sin ¢ d@ de
0 o Jo

oo 27 n
= / rde=7"dr / cos? @ df / sin® ¢ do
0 0 0

® e 4 4w w3/2
:L rie dr~1r-§=3 23 r=

Thus we set

V2 ull? (G =1,2,3).

(3.124) €j41 = 3/4

Then ”ej+1”L2 =1 and (ej,el) = 0, ] = 1,2,3.
For e5 we compute

> 3:5 1573/2
(3.125) /Iv]“pdv = 47r/0 rée-r"dr = 4 - S VTE T
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Now we consider
(3.126) es = af|v|2 — B)pl/2.
We want (es,e1) = 0 and |les||L2 = 1. Now
(3.127) (e5,€1) = a/|v|2udv - aﬂ/udv

= 4dra /00 rde~mdr — af8 - 73/?

0
= 4ra - gﬁ ~ affnd/?
3

= 73/2¢ (5 -,B) .
Therefore we take 3 = 3/2. Then (es,e1) = 0 and
(3.128) flesl = a? [ (ul2 ~ By2pde = at (ol 2800l + P

= o2 [~4—N3/2 —~23. _7r'%/2 4+ 32 W?/z}
= o273/2 [% _ g + ?1} = a273/2. g - goﬂwr’/?

Thus we take
(3.129) a = \/g n—3/4;
then
(3.130) lles|lpz = L.
Therefore we take
(3.131) e5 = \/g T=3/4 (lv]2 - g) pt/?
and an orthonormal basis for N(L) is {e1,...,e5} as claimed. Let Py be the

orthogonal projection from L?(v) onto N(L):

5
(3.132) Pof = (f.ex)en
k=1

From Lemma 3.4.1 we know that there exist §; > 0 such that

(3.133) (£, LIS z &all(T = Po) fN3, f € D(L).
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LEMMA 3.7.1 (3.133) holds for f € L3(v), 3> 1.

Proof. This will follow from the inclusion L3 C D(L). Recall that L{f] =
v(v)f — K f. We will show that v(v)f € L2, K f(v) € L? for f € L3,
Since v(v) < (1 + |v|) < ¢{v) and g > 1,

(3.134) /Vz(v)fZ(v) dv < c/(v)'zfz(v) dv
<c [@o e
=c|fl3 5 < oc.

Let k = |ki{ + |k2|. Previously, when showing that K is bounded on L? in
(3.100), we showed that

(3.135) K F(0)] < (/k@)w (/ kf2(u) du)w

Hence by (3.66), (3.68),

(3.136) 1K FII2 Sc[s%p / kdu] / £2(x) [ / kdv] du
<t (s [ kau) - (sup [ kav)

< difllf <
since L% c L?2forall 3> 0.

3.8. Estimates on the Nonlinear Term

We are always assuming the hard-sphere case. Recall that the equation for
the perturbation f from equilibrium is

fe+v Vo f + L{f} =T(f, ).
We define the symmetric form
(3.137) L(f,9) = u~3Q(u¥ f,utg).

We begin with some properties of I'( £, g):

(i) PoI'(f,9) =0,
(i) = ()£, 9o < 8l floo.plGloc.ns B2 1.

For the proofs of these assertions, we note that (i) is already known. For
part (ii): the “loss terms” are (with ¢ = q(w, |u — v{))

(3.138) Ty =p~1?(w) / / q(f(wyp (w2 (v)g(v) + f)u! 2 (v)g(w)pe'? (w)) dw du.
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A typical term is

(3.139) Iy = / lw - (v — u)|u/2(u) f(u)g(v) du dw

(u)? f(u) dw du
(u)?

= @2%9(0) (0)7 [ [ o (0= wlut/2(0)
< clgle ol loosp @)= - [ (Jol + ul)1/2(u)
< clglse sl floog(v)1=#, B> 1.
By (3.56), v(v) > clv| for large |v|. Thus
(3.140) v=1(u) (vl < clgloo,3l floc,g  for all v,
The gain terms I'y are dominated by
520) [ [ a2 2aatur) + i 200) Sty 200 s
< [ [lo- o=l /2w) (g + 1 ()g(w) dudes
<cf / - (0 = ) 5172 (u) | ]ooy191o0,5 (") =B (u') =] du do

Now
(3.141) )2 ()2 = (1+ 2)(1+ w]?)
> 14 [ + |02 > 1+ [of2 = ()2,
Thus
B.142) ] < elflmloles [ (o] + et/ 2(0) (o) du

< clfloc,8lgloc 8 (V)1 for B> 1.
As above, we now use v(v) > c|v| (which is valid for |v| > 1) and we are done.

Remark. These estimates indicate that the spaces L3 are the “right ones”.

Now we state and prove the key estimate on the nonlinear term I'(f, g).

THEOREM 3.8.1 Assume the hard-sphere case. Let £ > %, 8 > 1 and
f.9 € LF(v; H:(z)). Then

v-IT(f,9) € L (v, HE(x))

and

(3.143) lv=2C(f, 9)lles < call flle.sllglle.s-
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Proof. For the hard-sphere case, we have g(w,|u —v|) = w- (v —u) on S2.
We will take ¢ = 2 for simplicity. Then

Z |D%Floss(fs 9)l

fa| <2

<aumr2 [ [ gt 2@ wg) + e

+1f () gz ()] + | fe= (u)g(v)} + | f2(w)gz(v)] + | F(w)goa (V) dw du + - --
=L+ La+---+ Le + (6 similar terms with f « g).

Similarly,

Z [D%Fgain(f,g)( <G1+ Gy + -+ G + (6 similar terms withf — g)

jaj<L2
where e.g.,
(3.144), Gy = p-112 / f g2 ()2 (7)) £ () (v dw du

Ga = -1/ / f QU2 ()2 (7)) (Y g () oo s,

etc.
Consider the loss terms. We abbreviate f(u) = f(z,u), etc. and will often

use the Sobolev inequality sup, [f(z,u)| < cl| f(-, uMl2(z). A typical term Lg
satisfies

Lolta < [
= [ |2 lgma( [ 2t ()71 )] dodu|” o

2
dx

9z (V) /;Ll/Q(u)q‘f(u)l dw du

2

2
<o) [sup @)l | - | [ nt/2w)atu-4 s aul
2 1g(, Ny

Now recall that for the hard sphere,

(3.145) / qdw = (pos. const.)|v — ul.
s

Hence

(3.146) /ul/z(u)q(u)*/3 dwdu = c/ lv — u|pt/2(u){u)~Bdu < c(1 + |v|).

Therefore

(3147)  |lLslZag) < c()25(1 + [0S WG 5 - (0)289( )
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From (3.54), co(1 + [v]) < v(v) < e1(1 + |[v]). Thus we get

(3.148) O Neolliace < cbbas (gt oMo
Thus with H%(x) = L%(x) we have v—1Lg € L%O(U,HO(:L‘)) and
(3.149) o= Lello,s < clfllzp - gl

as desired.

Next consider the term Ls which involves fr(u)gz(v). We have
(3.150)

v) / [ w1 r2)asa(0) o du = cgu(w) [ o = ulut 20 fo(w)

Therefore

el = ¢ [ lax(o)P

2
dzx

[ 0= w2 (w) do

63

< [laetor [ 1o w2 d ( [ure sz du) dr.

The middle term here is 0((1 + [v|)?). On the last factor we use

1/2
e [urmpaa)

Hence HLsHiz(_T) is dominated by

1/2
e(1 +m>2/lgr(v>12 (/u”"‘(u)f;?(uwu) dz
1/2 1/2
< e(1 4 [v])? (flgx(v)l“ dz) (]/u‘“(u)f£<u)dudr)

1/2
o1 + (o) 2llg= (> 2124, (/u‘/’(u)nfz Gl s, u>

1/2
(1 + w2 gC, )32 ) (/u”z(u)llf(-,u)ll‘},z(r) du)

= o1+ [o)2(0) "2 [ lg( 0llarecey) | [ #7200 @ISl g, du|
(x)

It follows that

v=Hv)(v)B||Ls |l 12(x)

1/4
< e(w) gl vl e 'S%P (B (- ull 2 [/ﬂl/z(u)(“>_wd”}
< cligh2.50fll2.5
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as desired. All other loss terms can be handled in the same manner.
Now we consider a typical gain term, say G4. Using (v/)2(u/)2 > (v)? from
(3.141), we get

Gy = [ | [ /20 st )o(w) o o
<@ [ | [ a2 w) el ()90 dr ]
< (v)=% / ( / qul/z(u)(u')wf%x(u’)dwdu)-
(/qul/z(u)(v’)wg?(v’) dwdu) dzx.

By the Sobolev inequality we can write

(3.152)
||G4l|iz($)

Sc(v)—zﬁ (/qu”?(v')”llg(w”’)Ili,z(,)d‘“"’“) /qu1/2<u')2ﬁIlf('»"')llz;{z(z)d“’du

v

2 2 2
< cfv) 2 {SU’P (1")ﬁ||9('»v')||n2(m)} ' [S“,P (ul)ﬁ“f(‘»u,)“}{?(z)] : </qu-1/2d<ddu) :

Using (3.145) above, we get

(3.153) /qu‘/z(u) dw du = cf v — ulp!/2(u) du < (1 + |v)).
Therefore

8 2
(3.154) WGl o cqop, Msis

v(v)

as desired. In order to see that e.g.,
(3.155) v-1Gs € LF (v, HO(x))

we have this simple lemma:

LEMMA 3.8.1 : If |[v| is large, say |v|2 > 4, then either |[v/|? > |v|2/4 or
else [v']2 > |v|2/4.

Proof. Consider the invariant energy e = |u|? + |v|2. If the lemma were
false, then

fv

2 2 2
(3.156) o2 < e= |2+ |v]2 < Tl + M_ lvl

4 2

which is a contradiction.
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Now we can decompose (G4 as

(3.157)  |Gal < / Q1 2() | foa ()9 ()] du e
{(w‘U):!U'E!vI/?}

+ / qu1/2(u)|fmz(u’)g(v’)| dw du.
{(w.a):|v|=]v}/2}

Each of these terms satisfies an estimate of the form (3.152). Since both
f.g € LFP(v, H?(z)). each term tends to 0 as |v| — oo. The rest of the gain
terms can be similarly treated.

3.9. Equations for 13 Moments

Under the Fourier Transform, v- V. f — i(v - £) f . Now we regard v- £ as a
linear operator from N (L) — some subspace W of L2(v). Consider

(3.158) &1 =1; ¢j41 =705 (j =1,2,3); ¢j44 = v (1=1,2,3);
08 = U132 09 = U213t d10 = V3V1; 410 = |V|%v; (7 =1,2,3).
Recall the form of the summational invariants v
(3.159) v1= Ly =y (5= 1.2,3); s = Jo]2.
Clearly each ¢4 can be written as a linear combination of ¢1,...,¢7. Put
= linear span of {u!/2¢}:2,.

Note that v-€: N(L) - W for all £ € R3, and that N(L) C W.

Now we construct an orthonormal basis for W. We already have five or-
thonormal vectors e;.... es from (3.122), (3.124) and (3.131), so we need 8
more. Consider for some a > 0

1
(3.160) Eipa =0 (1,’]2- - 5) pl/?2 (G =1,2,3).

We claim that these are mutually orthogonal. Indeed, using (3.120) we get
eg.,

1 1
a~2(és, ég) = /p <Lf - 5) (vg - 5) dv
1
:/v]?v%udv—/vfudv—!— Z/,udv
o 2 > 2 w3/2
= rbe-r dr/ wiw? dw — / rie-r dr/ Zdw + ——
0 | =1 0 4

3 4 1
= \/—-——gﬂw cos? ¢sin pde + Z7r3/2
0
J/ 3 1 n 3/2
:%——Zﬂ/? [—50053(}5 j|+-—7r4

=0
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To find the normalization constant o, we compute
5 2 _ 2 4_ .2 1
5 al? = a /u(vl —vfeg) do
[ 2 i 2 1
=o? rSe ™" dr wf dw - rie~" dr wlidw+ ~ [ pdv
o [w|= 4
L w|=1 lw|=1

= o? LF\/" _—_n—-\/; ur] cos? ¢smd)d¢+ 11' ]
ca? |32 _ 332 2 1 _,ra/z]
L4 4 3 4
a2r3/2

2
=L 23 _241)=
4
Thus we take a@ = V27-3/4, je.,
1
(3.161) Eira = V2T—3/4 (v - 5) pt? (j=1,2,3).

Then the {€;44}2_, are orthonormal and

3
(3.162) €5 + 66 + 67 = V21 —3/4p1/2 (lv|2 - 5) = V3es,
ie.,
(3.163) e5 = — (&5 + & + &1)
) == e 6 7).
5 7 5
Set ¢; = %[1, 1,1]; choose 2 other orthonormal vectors cz,c3 such that

c1 X ¢z = c¢3 and {c1,c2,c3} forms an orthonormal basis for R3. Thus

1 ] ] k
(3164) c3=-—4=|1 1 1 [cas — ca2,c21 — €23, co2 — ca1].
\/§ Cc21 c22 (23 \/—

Note that Z?:l c3j = (3 It follows that 23_—,1 cz; = 0 also. To continue the
basis computation for W, let

3
(3.165) Clyq = chjéj+4 (k=2,3),
j=1
es = asv1v2ul/2, eg = agvavaul/2. e = aiovavipl/?,

ej+10 = c11([v]? — Bro)ujput/?  (j=1,2,3).

Next we perform a brief check of orthogonality. We begin with
1 ... - - -
(3.166) (es,e5) = (ﬁ(es + é6 + €7), 2165 + C22€6 + 02367)

= —=(ca1 + €22 + €23) = 0.

a»—a



THE BOLTZMANN EQUATION NEAR THE EQUILIBRIUM 67
Similarly (e7.e5) = 0. Clearly (es,€e;) = 0, j = 2, 3,4 because the integrand in
each case is odd. Next,

(3.167) (€6, €1) = (c2165 + 2266 + ca3€7,€1)

Since (€44, €1) are all equal, j = 1,2, 3, (es, e1) = 0 because c21+c22+c23 = 0.
Similarly (e7,e1) = 0.

Clearly, es, eg, €10 are orthogonal to e;, 1 < £ < 7, and for £ = 11,12,13.
Furthermore e;410 (j = 1.2, 3) are clearly orthogonal to e except for £ = 2,3, 4.
For these cases, we will choose 810. We force (e11,e2) = 0 via

(3.168) /-v'f(lvl2 — Bro)pdv =0:
o0 [e o]
/ rée=r’ dr/ wi dw — 510/ rde—r’ dr/ w?dw =0,
0 |w|=1 0 |w|=1
or

(3.169) 231 [%6—5\/— — Bro- gﬁ] =0.

Therefore 510 = % i.e.,

5
3170)  ew=an (F-F)ua (G=1.29)
Then clearly also
(3.171) (elz,ej)=(613,ej) =0, ] =3,4.
Lastly we consider the normalization constants. ej,...,e7 already have

norm 1. We will have ag = ag = a19 with

o
(3.172) 1 = ||es]|? = a3 /v%vgudv = a%/ rﬁe—"zdr/ wiw? dw
0 Jw|=1

3.5 A7 afw3/?

Therefore we take
(3.173) o = ag = g = 2mr—3/4,

For ai1, we require

5 2
a7 1=fenl? =, [ (b= 3) vt
2 * 4 2 5 ’ 2 2
= af; ri\re—-) e "dr wy dw
0 2 lwl=1
I 25
=a?  — r8—5r6+—r4> e~ dr
11 3 o ( 4
2
o} 4 357 535 25 3
-3 ‘/7?[ 32 6 18
— a2 3.

=
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Therefore

2
(3.175) an = n3/4,

Therefore we can conclude that an orthonormal basis for W is given by {e; }13

J=1
where

1
€j4a = V27-3/4 (v] - ‘2‘) pt/? (j=1,2,3)
and
(3.176) ey = w=3/4p1/2, ey = V2 w=3/4y;ul/? (j=1.2.3):

2
es = \/; n-3/4 (|v|2 - ;-’) Wi,

3 3

e = E C2j€j44; €7 = E C3;€j+4;

eg = 2m=3/4v uapl/2; eg = 2m~3/duguopl/2; €19 = 2m—3/4pyv3ul/2;

2
¢i+10 = 7 m—3/4 (M? - -52-) vipt/? (5 =1,2,3).

Let P be the orthogonal projection from L2(v) into W'

13
(3.177) Pf=>"(f ex)ex.
k=1
In what follows we compute the equation satisfied by Pf. From
(3.178) fe+v-Vof + Lf] =T(f, )
we compute, for W, = (f,ex) (k=1,...,13),
(3179) K = (fen) = ~(o- Vafoen) = (LUfler) + (N7 ). 0.
Split f using
(3.180) f=Pf+({—-P)f.
Then
(3.181)

(v-Vaf,ex) = ze: ( ) Z (—— v36k>

=3 gy e =ZBi (PS+(I = P)f, )
£

I

0
- Z; Oze (;(f, ej)ffj,veek) + Ze: 5;;((1 ~ P)f. veex)
e (ZJ: W’jej,veek) + ; 5%((] - P)f, Wek)-

E

for)

%
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For ¢ = 1,2, 3 define a matrix V¢ by
(3.182) (V8i; = (veek, e5) (k,j=1,...,13).
Then the first term in (3.181) is

0
(3.183) Z b_x—; (z Wjej,vzek) = Z Bi:w Z(ej,'UKEk)W]
‘ J ¢ J
9 {4
=2 g, | 2V

J

= Z %(V“W)k

= Z (Vf 6:1;@)

Now we compute (L[f], ex) similarly:

(3.184)  (Lf).ex) = (L[Pf + (I — P)f], ex)

= (L [Z Wjej} ,ek) + (L[ - P)fl,ex)

- (Z W']L[ej},ek) + (LI ~ P)f} ex) -

For k,5=1...., 13 define
Lij = (Llej], ex).
Then the first term in (3.184) is

(3.185) Zw (Lles)ex) = > Li;W; = (LW)i.

J

For the collision term we compute

(T'(f. f) ex)
=TPf+U-P)f,Pf+(I—-P)f) ex)
= (T(Pf, Pf),ex) + 2(0(( ~ P)f, Pf),ex) + (T((I = P)f,(I = P)f), ex).

For the first term we have

I'(Pf,Pf) = (Z Wees, Zumem)
= p~ 2 (0)Q*(ut/2Pf, ut/2P f)
= u17200) [ [ gt = oDt/ () P11 200 P ()
p/2()Pf(v)pt/2(uw) P f(u)] dw du.
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We call the “loss” term I'_(Pf, Pf)} and calculate

(T~ (Pf,Pf),ex)

= [ [ wPs (w2 w2pf,er) dodu

= // ul/z(u)ng(x)eg(u) (u‘1/2qu1/2ZWm(m)em(v),ek) dw du
¢ m
=ZWmWf //ul/Q(U)Ee(U) (u=12q - p'/%em, ex)

= Zwmu —_(ee, em), ex).

A similar calculation works for the gain term 'y (Pf, Pf).

Now write
13
(3.186) (C(Pf.Pf)iex) = (W)= D qf,WeWn
f,m=1
where
(3.187) gt = {(T (ef?e"l)?ek)}lgk,k,mgl?:'
In conclusion, we have the following: let
Wi
(3.188) W = [ } y Wk:(f,ek).
Wis
Then
BW ow
(3.189) wa +IW = (W) +7(f, V)
where r(-, -) denotes all the remainder terms.
In particular, when f = Pf, we have
(3.190) Z va — + LW = q(W)

which is a symmetric hyperbolic system with constant coefficients.

3.10. Computation of the Coefficient Matrices
For £ € R3, let

3
(3.191) Vie) =3 Vit = {w- E)ek’ef)};ag )
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Thus V is symmetric. The 13 x 5 matrix given by the first 5 columns gives

the representation of v - £ as a linear operator from N(L) — W. Decompose
V(&) as

(3.192) V(E) = [5;%2&2 ‘V/;jgiii] :

So VI = V1. VL =Vay, VL = Va.

Now we compute V}1(£) whose matrix elements are given by

(3.193) {((“'f)eksef)}

1<k 6<5

Take k = 1 and write Vi; = V for brevity. Then Vip = Vls = 0 because the
integrands are odd functions of v. and

Viz = ((v-&)er.e2) = m=3/4 . V2 =3/4(u1/2 (v - €). v1p1/2)

o0
= /25-3/2 /51 cvipde = 21/ 25 -3/2g, / re—r"dr / w? dw
0 Jwl=1

. ir 3 f]
= 91/27-3/2¢, 202 o SL
T 13l T3 T ¥
Similarly
~ - 1

(3.194) Viz = 552 Vig = ——\/—553
Now taking k = 2 we have
(3.195) Vag = ((v - E)eacer)  (F=1..... 5).

Recall that

(3.196) ey = V2w 3 pl/2,
Thus

(3.197) Vaa = Vag = Vay = 0.
and

(3.198) Vo, = /(L' E)en - e dv = n-3/4 . /234 /(v Opvy dv =

S
]

by the above.
In a similar manner we then get

i

- _§_ ‘ -
é“_ i v s 50_
S0 0 0 &
(3.199) V@) =% 0 0 o0 i
& &
$ 00 0 0 &
0 5L 2 L g
L v3i V3 V3 J
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Next we compute V1(§) whose elements are given by

(3.200) Va(§) = {((v : E)ek,ee)} keon 23"

£=1....,5

Again call V3, = V for brevity.

Take k = 6: then the first row of V has the elements

T
€1
€2
(3.201) /(v -€)eg | ez | dv.
€4
€5
Recall that
(3.202) €6 = C21€5 + C22€6 + C23€7,
where
1
(3203) éj+4 = \/2_7T—3/4 (’UJ2- - 5) [,Ll/2 (_] = 1.23)
Thus
(3.204) Vit = Vis =
and

(3.205) Vig = /(U <&)egea dv

/(U -£) ZCQjéj+4 V234 /2 du

j=1

3
1
= V2 734 . 2n-3/4g Zczj /v% (vf - 5) pdv.
i=1

Now by direct computation,

1 .
(3.206) [gndo =3 [otuar £,

Thus
2

Vlg = 271'_3/251(,‘2] f (vi1 - v—2—1) [,Ld'U

> 1 [ 2
= 2m3/2¢91 6 {/ rﬁe‘rl’dr/wf dw — 5 / r*‘e‘"'dr-/uf dw}
0 Jo
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Hence the first row is given by
(3.207) 0  ca& c2282 2383 0].
Similarly, for k = 7 the second row is
(3.208) 0 enés c3282 €3383 0].
Next, let k = 8: the third row has elements
T

€1

€2
(3.209) /(U Eleg | es | dv, where eg= 27"3/4puul/2

€4
€5

Therefore Vg, = Vis = 0 and
(3.210) Vag = /(v-g)egez dv
= 2n=3/4 . /2 x-3/4 /(U -Ovivavipdv
= 23/271"3/2{2/0121)%”(11)
oo
= 23/27r“3/2£2/ r6e=r" dr f wiw? dw
0 |w]=1

_ 98/2-3/2¢, . O bym 4w
16 15

23/252
T4

ﬁ.
Similarly

(3.211) f/:';;} = /(U . 6)6883 dv = ! y V34 = /(v . 5)6864 d’U = {.

Thus the third row is

. 2 €1
(3.212) [o =2 L g 9
V2 V2
When k& = 9, the fourth row is
-

€1

€2
(3.213) /(v -€leg | e3 dv, where eg = 2m3/4yyu3ul/2.

€4
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We get for the fourth row

€3 [:3
(3.214) [0 0 :/—.—2_ NG 0]
and similarly
£ 33
(3.215) [O NG 0 /s 0]

for the fifth row.

For row six (k = 11), the elements are

(3.216)

T
€1

€2
f(v -&)enr J ez} dv, where e =2-5"1/27-3/4 (]vP - g) v pt/2.
€4
€5

Therefore

(3.217) Vo1 = /(v -&eyrey dv = czgj / viut/%er; dv
J

for some constant ¢. But

(3.218) /vjul/zen dv =c(ejp1.€11) =0 (1 =1,2,3)

and thus 1761 = 0. Similarly \7’52 = 0. Clearly Vﬁg = 1:?34 = (0 and

Ves = /(U -€)eres dv

—0.5-1/27-3/4, \/f _3/4 /(v (\UP _ _) v - <|v|2 _ g) v
) 3
= 23/23-1/25-1/21-3/2¢, /pv |v|2 — 3 lv]2 — 3 dv.

For the integral

(3.219) I= /;w';‘ (|U14 Aol + 15) dv

we get by direct computation the value (5/4)73/2. Hence

(3.220) 1765 = 23/23-1/25-1/27-3/2¢, . gwg/z
= 2~1/23--1/251/2£1
5

= 651_
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The computation of the remaining rows is similar.
Hence V21(€) has the form

0 c2br e c3és 0

0 C(}lfl c32é2  c33€3 0

0 \/‘% 5\/‘_5 EO_ 0

00 G B0
Va(€) =10 5 0 2 0

0 0 0 0 \/§ &

0 0 0 0 \/§ &2

0 0 0 0 \/é &3

3.11. Compensating Functions
We begin with the definition of Kawashima's Compensating Functions [38].

DerFINITION 3.11.1 Let R(w),w € 52 be a real 13 x 13 matrix. R(w) is
called a compensating function for the system of 13 moments (3.190)

3

oW
W+ v g—f +IW = g(W)
1 2

' (i) R(-) € C>=(S?), R(—w) = —R(w) for all w € 52,
(ii) A*(w) = —R(w),
(iii) There is a 6 > 0 such that
(3.221) R(R(w)V (W)W, W) + (LW, W) > §|W|2

for all W € C13,w € S2. (Here (-) = inner product on C13).

For the Boltzmann equation (BE) itself, Kawashima’s definition is as fol-
lows.

DEFINITION 3.11.2 Let S(w),w € S2 be a bounded linear operator on
L%(v). S is called a compensating function for the (BE) if

(i) S(-) is C> on S? with values in the space of bounded linear operators
on L?(v), and S(—w) = —~S(w) forall we S?,

(ii) 1S(w) is self-adjoint on L2(v), for all w € §2,

(iii) There exists § > 0 such that
(3.222)

R(SW)(w - v)f, f)+ (LIf), £) 2 6 fI2 forall f € L3(v), we S2.
Now we introduce the notation

(3.223) W = [W1, Wy, ..., Wa|T;
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Wi = [Wh,---,Ws]T; Wi = [We,- -, Wi3]T.

LEMMA 3.11.1 There exist 13 x 13 real constant entry skew-symmetric
matrices R (j = 1,2,3) such that for

3
(3.224) Rw) =) Riw;
i=1
we have
(3.225) R(R(W)V (W)W, W) > e1|W[|2 — Cy|Wig ]2

for somec1 >0, all W € C13,w € §2. Here () is the inner product on C13,

Proof. Let
3 —_—
_ e | @R(£)55 Vig(€)5x8
(3-226) R(‘S) = JE_;I RJ{J - {_Vn(s)s)(s (8 x8 )
Here a > 0 is a constant to be specified later, and
0 & & & 0
_ -£& 0 0 0 0
(3.227) Rn(§)=|-& 0 0 0 0
-6 0 0 0 0
0 0O 0 0 O

Thus each RJ is 13 x 13 real skew—symmetric with constant entries.

Call

(3.228) U(€)=1[%(QV(£) I |
_[aRn V2] [V Wi

~Var 0 Va1 Va2
_ aR11Viy + Vi2Var  aR11Viz + ViaVap
—VaaVny —Va1Via '

Thus

(3.229) R(w)V ()W = [(aﬁllvll + ViaVa1)Wr + (R Vig + V12V22)Wu]

Vo Vit Wy — Vo1 Vio Wiy

so that

(3.230) (R(w)V(w)W, W) = ((aRn Vi1 + ViaVar )W, Wy)
+ {(aR11 Viz + ViaVa2) Wiy, Wr)
—(VarVuuWi, Wir) — (Va1 ViaWir, Wrr).
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Now suppose that we can show that the real part of the first term is at least
c|Wr|? for some ¢ > 0 and appropriately chosen a. The moduli of the second
and third terms do not exceed c|Wp||Wir| < €]Wi|2 + c|Wiy|? for any € > 0.
The last term is of the order of [W;r{2. The lemma then follows.

Thus we consider

(3.231) Un(g) = (CKR]]VH + Vi2Va1)(€).
Now
k0 0 0 LZep
= 1|0 & -&& —&& 0
(3.232) RV = —-—5 )] —61& —€§ __5.253 0
0 —&i& —&& & 0
0 0 0 0 0
It follows that
— V2
\/-§R<R11( Wi (w)Wr, Wi = §R{W1 (Wl + % Ws)

+ Wz(—wl Wo — wiwaWs — wiwzWy)
+ W3(~w1w2VV2 — wj VV3 — UJQ(J.)3W4)

+ W4(—W1&)3VV2 — wowzWs ~ w§W4)}

5
> W2 - C2 Z [Wi|?
k=2

for some ¢p > 0. Next we write
2
(3.233) (Via()Var () Wr, W) = |Vas () W1

and compute directly

ca1wi Wa + coawa W3 + caawaWy T
caiw1 Wa + C32w2W + c3zwaWy
\/—wz‘VQ + w1 Wy

\/—w3W3 + \/—LUQVV
Var (w)W; = Z5wsWa + —sw1 Wy
w1¥V5
woWs

w3Ws

Sien %ﬁ!

To be specific, we now choose

(3.234) Cc2 = [ 1
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For the sum of the squares of the first two rows, we get directly

le21w1Wa + c2awoWs + coawsWal? + Jeaiwi Wa + cazwaWs + cazwaWa)?
% lwr Wa — waWs|? + é lw1Wa + woWs3 — 2wz Wyl|?
=R [Wflwzl2 + W3 |W3|? ~ 2wiws WiV 3)

+R élw%IWzP + w2|W3'2 + 4walW4|2 + 2w WoWs — dwyjwaWoWy — 4w2w3W3W4]
= %(w%|wz|2 +wi [ Wal? + wilWal?) — 592 (Wi1wa Wa W3 + wowsWaWya + waw; WaWa).

Hence |V21{w)W7/|? is equal to

—-?R[w%leP -+ w%leP + wngdz — w1w2W2W3 — w2w3W'3W4 - w3w1W4W2]
1 —
+ §R E[w%‘WQP + wlegP + 2w1ng2W3]
1 —
+ R §[w§'W3l2 + w§IW4|2 + 2L«J2w3W3W4]

1 — 5
+ R §[w§|W2|2 <+ w%|W4|2 + 2(.«)1(4)3“/2”/4] -+ _IW5P

1 W 1 W, W,
= Larwap + 2 S R Logge o A0
2 2 2
1 1
+§R{ w1w2W2W3+3wzw3W xW4+3w3w1W4W} "l” 2
1

5
-Z k|2+§n [W2|Wal2 + w2|W3|2 + w2|Wa2

N

ll

+ 2 1sz2W3 + 2w2w3W3W4 + 2wawi Wy Wg]

i

oo | -

X
ol o
N

(Wil + - |w1W2 + woWs + wsWy |

> |Wk|2~

[ SR
x
I!

Thus now we have, for any o > 0,

(3.235) aR (Ry1 (w)Vir(w)Wy, W) + [Var (w) Wi |2
5 5
> o (Cz"/VﬂQ ) Z |Wk|2) +c3 Z IWklz-
k=2 k=2

Take a = 32&-. Then
(3.236) RU (W)W, W) > c|W(|?2 for some c¢> 0.

This completes the proof of Lemma 3.11.1.
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COROLLARY Let R(w) be as in (3.226). Then there exists § > 0 such that
BR(w) is a compensating function for the system of 13 moments.

Proof. By definition,
(3.237) f = {(LEk, eg)}1sklg513.

Thus L decomposes as

_— 05)(5 05><8
(3.238) L= 08x5  [8x8

where Lgo is symmetric positive definite.

Next we exhibit a compensating function for the Boltzmann Equation.
Write

(3.239) R(w) = {rij(w)}i5=1-

Given w € 52, let

13
(3.240) Sw)f = Z Brie{w)(f, ee)ex for some 3> 0, f € L2(v).

k=1

LEMMA 3.11.2 There ezists 8 > 0 such that S(w) is a compensating func-
tion for the Boltzmann equation

(BE)  fi+v Vo f+L[f]=T(ff)

Moreover, S(w) : L2(v) — W.

Proof. The last assertion is clear. Recall that
3
(3.241) R(w) = w;Ri
Jj=1

where each R7 is a constant 13 x 13 real skew-symmetric matrix. Thus S(-) is
C>(S2) and S(—w) = —S(w), |w| = 1. This is property (i) of the definition.
Let f,9 € L?(v). Then

13
(3.242) (SW)f,9) =Y Bree(w)(f,ee)(g, ex)-

k,f=1

Write

(3.243) W= {Wihii, = {(f,en)hilss u={uwe}il, = {(g.ex)}ids-
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Then

(3.244) (Sw)f. 9) = BLR(@)W, ).
Therefore

(3.245) (iSw) 1, 9) = BERW)W, u).

Since R(w) is skew-symmetric, {S(w) is self-adjoint. This is property (ii). For
property (iii): let f € L?(v),w € S2. Then

13
(3.246) (SW)w-w)f, /)= Brie @)((v-w)f,ee) ([ ex).

k=1

Put f = Pf+(I—P)f, where P is the orthogonal projection from L2(v) — W,
ie.,

13
(3.247) Pf =" (fex)ex.
k=1

Then, for W; = (f,e;), 1 <j <13,

(3.248) ((v-w)f,ee) = (Pf+ (I~ P)f,(v-w)er)
= (Pf,(v-wee) + ((I = P)f, (v-w)ee)

13
= (ijejv(v 'w)ef) + ((I_ P)f, (v-w)eg)

j=1
13

= Z Wi(ej, (v-w)ee) + (I — P)f,(v-w)ee)
i=1
13 3

=Y WY (ej,wptpee) + (I — P)f, (v w)ee).

j=1 p=1

The first term I equals

13 3 13 3
(3.249) Y Wi wples,vped) =Y W5 Y wp(VP)se
j=1 p=1 i=1 p=1

13 13
= Z W;(V(w))je = Z W;(V(w))e;-
Jj=1 Jj=1

Therefore

13 13
RSW)(v-w)f, ) =RB Y he(w) Y Voj(w)W;Wi

k,e=1 j=1
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13
+RB D rre(w)((I = P)f, (v w)ee) Wi

k=1
= RB(R(w)V (w)W, W)

13
+BR Y rre(w)((I = P)f, (v- w)ee)(f, ex)

k,f=1
2 Blel|PoflI? — CLll(T = Po) f1?]

13

+BR " rhe(w) (I~ P)f, (v w)ee) (Frex)

k,6=1

where P is the orthogonal projection onto N(L).
Now we claim that the second term J satisfies

(3.250) [ < eBISIN I = Po)fAl-
Indeed

(3.251) [(free)l < 1-YifH
and

(3.252)

(I = P)f, (v-w)e)] < WI = P)fI| I(v- weel| < (T = P)fI| < cll(I = Po)fIl-

Therefore

R(S(w)(v-w)f, f) 2 Barl|Pofl|2 — BCLII(T — Po) fII? — eBlIfIl II(T — Po) £l
> Blcr — e)||Pofl? — BCN(I — Po) fI|?

for any € > 0. Recall that -

(3.253) (LIfL, f) = &1l — Po)fl|* for some &; > 0.

Now we add these relations, taking ¢ = ¢1/2 and BC. = 6;/2. Then
(3.254) R(S(w)(v-w)f, f) + (LIf]. f) = b2li fII?

for some 62 > 0. This proves the lemma.

3.12. Time Decay Estimates
Consider solutions to the linear equation

(3.255) fi+v-Vef+L[fl=g, [f(0,z,v)= folz,v).
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Now we define
= DB, winnom k= ([Urcomie)
My = Lo, HE(&)),  with norm g, = ( [ @P1C, 001 dv)m,
122 = L0, Lr(a)),  with norn Y11, = ( If(-,v)h%dv)l/z-

THEOREM 3.12.1 Let £ > 0. Assume that
(i) foe HENLL2,
(i) g € CO([0,00); HEN LY.2)
(i1i) (Pog)(t,x,v) =0 for all (t,z,v) € [0,00) x R3 x R3.

Then if f € C°([0,00); HE) N C([0,00); HE-1) is a solution of (3.255), we
have

(3.256) BF(ONZ < (1 +6)-3/2(} folle + 1Lfoll)?
e / 1+t = 7)=32(Lg(r)le + lg(r)]lh)? dr.

Proof. Let w = fﬂ and take the Fourier Transform in x:

(3.257) ferielv-w)f+LIfl=39, f(0,6,v) = fol€,v).

Let S(w) be a compensating function as above; k > 0. Consider

(3.258) E[f1(£,€) = 1f(t, & )% = rA(E)ESW) f(2,€. ), f(2,€,-)

where the norm and inner product are over L?(v) and

(3.259) ) = %

LEMMA 3.12.1 There exist kK > 0, § > 0 such that

(3.260) SI712 < BLf| < 202
:E(f] + 6p() Elf) < clig?

where

(3.261) e = o

RS
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Assume the lemma for now. Multiply the second statement in the lemma
by etd7(&); we get

(3.262) BIf) < et (o] + e [ e g(r, )7 dr.
0

Therefore by the first inequality,

(3263)  [IF(t, &)1 < ce 82O fo(£)]I? + C/Ot6‘”‘5)(‘””!@(7,5)![2 dr.

Multiply this by (£)2¢ = (1 + |€]2)¢ and integrate in &:

/ (14 [ePYfit. Ol de < / (1 + [€[2)te TG | fo(6) |2 de

(3.264) * / / (1 + lef2)te P 7 g, €)]2 de .
0

The left side here is || f(¢)[}2. Let

(3.265) I = / (1 + [€[2)e~ 067 | fo(€) | 2de

= / +/ =+ 1.
l€l<e (g1>e

Notice that the function

3.266 hir) = >
(3.266) (=1 (r20)
is increasing. Thus

(3.267) 1< e TR A2 and

- st)el?
15 < sup fol€ a1+ €2) / R e
|€]<e E|<e

adtd
(1 + 62)8 sup ”fO "[2(U)/ T:‘jf dg.

|€|<e

The integral is dominated by

/le e-%%; d€ = const. (68)=3/2(1 + €2)3/2,
Now we take e = 1 and ¢ > 1 (without loss of generality) to get
(3.268) Io < =¥ ol + (1 +1)~3/? sup 1fo & M2

_ &t
10l + (1 + -9/ follZagu 110
< o1+ 0732 (1foll? + 1fola(e, 1 ayy)
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Clearly the same kind of estimate holds for the g-term in (3.264).

Proof of Lemma 3.12.1. That
1 . . .
(3.269) §Ilf||2 < Eff] < 2||If)j2
holds is clear for small k, say 0 < x < k1, because

(3.270) a(E) = - J'fl’w <

[NCR N

and S(w) is a bounded operator by definition:
13
(3.271) Sw)f =Y Briew)(f,ecdex, f € L (v).
k,e=1

For the differential inequality in the lemma, multiply

Py

(3.272) fr+ilél(w-w)f + LIf) = §

by the conjugate of f and take the real part to get

(3273) SO + (LU D) = R (@,

Next apply —i/¢|S(w) to the f equation:

(3274)  —ilé|SW)fe + €S @W)((v - w)f) — ilEISW) L] = —il€]S(w)g.
Take the inner product with f and the real part of the result:

(3.275)  R(=ileIS@)fi, ) + [EPR(S()(v - )], /)
= lelR { (S@)LIA, ) - (15@)3. )}

Since 1S{w) is self-adjoint, the first term is

(3.276) ~§5t-l€|(25(w)f .

Now we form the following combination: compute (1 + |£|2) times (3.273), and
add the result to x times (3.275). The result is

s2rm) o [CHED e - Mg gy

+ (L + RIS, £) + kIEPR(S(W) (v - w) f, f)
= (L + KE2)R(3, f) + sIEIR{ES (W) LIS}, ) — S(w)g, )},
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or

(3.278) % {(1 +2|£|2)E[f]} + (1 + (1 = e)ERNELL), f

+wlel2 {RS@)w - w)f, ) + (LA D}
= (1+ [EIR(G, ) + RIER(GS W)L, ) - (iS(@)g, )}-

For 0 < k < 1, the second term on the left of (3.278) is at least

(3279)  (1-w)(1+ R ) 2 (1= )1+ [€2) - 611 — Po) fIf2.

By the previous lemma, the third term on the left of (3.278) is at least as large
as

(3.280) RIE? - 62| 112

Therefore the left side of (3.278) is bounded below by

(3.281) g;{-l::-'m m} )6 (L €T = Po) 12 + lEP6al 2.

Now, to estimate the right side of (3.278): by hypothesis, Pog = 0 and

13
(3.282) (S(w)f.g) = Z Brie(w)(f.ee)(g, ex).

k,f=1
Therefore the absolute value of the first term on the right of (3.278) equals
(3.283) 1+ 1 = Po)g. )l < (L+ 1€ gl 11T — Po) -

Now use

(3.284)  S(W)LIf] = BD_ rxe(w)(L[f], ec)ex = ﬂZru (W)(f, Lled))ex
k£

and

(3.285) I(f, Llee))| < 1T — Po){].

Thus the absolute value of the second term is dominated by

(3.286) enlé] (IGS@)LIF), Pl + 1S @)a, )T
< enlél (I = Po) AL AN + gl A1)
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Thus for any € > 0, the right side of (3.278) is not more than
e(1+ [ENU = Po)FII? + ce(1 + €12 115112
+ 525|€l2lif||2 + wed|(T = Po) fI12 + %IEIQIIJ:H2 + cellgl|?
< (e + ke )1+ [EPNT — Po) fII2 + mell FIZIEIZ + ce(1 + [€12) g2

Now take ¢, k small such that

(3.287) € = min {%2, 6—61—} , and then 0 < k < k2,
where

1 6
(3.288) K2 = min {6’ 67‘} .

This completes the proof of Lemma 3.12.1.

3.13. Time Decay in Other Norms
Write the Boltzmann equation (BE) as

fe+ Bf =T(f, 1)

where
Bf =v-V.f + L{f].
Thus formally

(3.289) F(t) = e-tBfy + / te-u—f)Br( £, f)(r) dr.
0

To validate this we need to check that —B generates a strongly continuous
semigroup.

LEMMA 3.13.1 —B generates a strongly continuous semigroup e—tB in
HE €20, andint for£>0,8>3.

Proof. We sketch the proof for the choice H¢, ¢ > 0. After applying the
Fourier transformation in x to the equation

fi+v-Vof+Llfl=9, or fe+Bf=g

we get X

ft+'i§'Uf+L[f] =g.
According to the Hille-Yosida theorem, we want a bound on (B +AI)~! in the
appropriate norm. Thus we want to estimate a solution to the equation

M +ig-vf+ Lf) = 3.
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Write p(€) = (1+[€]2)¢. We multiply this equation by the conjugate of p¢(€) f,
integrate over R x R} and take the real part of the result to get

R / pel f12 d dv + R f pe f Lif)dedv =R / pe f §ded.

For R\ > 0 we then get, with the help of the Schwarz inequality and properties

of L 1 l
o [oipasavs ( [ pdfirdgas) - ( [ pdapdea)”.
(/pem?dsdvy <o (/pelgwgdvf
This says

1
“1gll <« —
I(B+AD1g]l < mlgl, or

1B +AD < o

This is the required estimate of the Hille-Yosida theorem. We have previ-
ously shown that for # > 1 we have L% C D(L), in fact, for such 3 we have
v{v)f, Kf € L2. This set is dense and we are done.

LEMMA 3.13.2 (i) Let

(3.290) ¢>0,8>3/2, fo€ BN L2(v, L(x)).
Then
(3.291) le=tB folle.s < c(1 +t)=3/4( folle,s + Nfoll2(v,1 (2)))-
(ii) Let
(3.292) 0>3/2,3>5/2 hi€CO ([0, 00); Bg) L i=1,2.
Put

- t
(3.203) f(t) = / e~ (=BT (hy, ha)(7) dr.

Q

Then
(3.294) Feco ([0, o0); 1’3;;)
and

(3.295) Iflles < e(1+8)=3/4halle,p.eNhalles.c
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where

(3.296) Mhllese = sup (1 + 7)3/4h(7)]e,5-
o<r<t

Proof. We first prove (i) under the additional assumption that fo has com-
pact support in v. Let f(t) = e~ B fy. This is a solution of the linear equation

(3.297) fo+ Bf =0 with data fo.
Thus
(3.298) fo€ B&N L2(v, L(z)) forall a>8

by the additional assumption. Therefore
(3.299)  fe (o ([O,oo)', B{;) nCl ([0,00); Bf;_ll) forall a > .
Now we can apply the previous estimate:

(3.300) e < (1 + )= (W folle + Hfoll 2,10 20)) -

Next, rewrite the linearized Boltzmann equation:

(3.301) fe+v - Vof+L{fl=0 as fi+v-Vif+v(v)f=Kf
and consider

(3.302) diis-[e"(”)*’f(s, z — v(t — s),v)]

= v{v)erWs f + evWIs(fy + v - Vo f)(s, 2 — v(t — 8),v)
= eV(WsK f(s,x — v(t — s),v).

Hence
(3.303) ft,z,v) = e v fo(z — vt, v)

t
+ / e~ =K f(s,7 — v(t — 5),v) ds.
0

It follows from (3.101) and Lemma 3.3.1 that

(3-304) WK flleo < cllflle, WK Sfllem < clfllem-r  (m2>1).

Therefore there exists ¢, 0 < ¢ < vy such that

t

(3.305) Wt leo < el folleo + f emclt=) f(s)e ds

0
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and
(3.306)

1 Oem < et follem + 1 / et f()em_rdr  (m=1,2,..))
Hence
1/ ®)leo < e=thfolleo + e / e=e(t=D | f(r)}le dr

t
< e |l folleo + 63/0 e~ (1 +7) =3l folle + 1l fo]ll2) dr
< c(1+6)=%4 Il folleo + Il folle + [ folll]

Since

(3.307) N folle < clfolles (B> 3/2)

we get

(3.308) I e < e(1+)=3/4 (Il folle.s + N[ follla] -

Now iterate in this manner:

t
1O em < e~ follem + o1 / e =T f (remor dr
‘ t
< et follem + 1 / e=ot=D{e="| follem-1
0
¢ Te‘C(T‘s) — T
e / 1/ (5 lem—2 ds)d

t t
<c +t)6‘c‘i||f0|lle,m+0/0 e‘““‘”lllf(S)Nltmd/ dr ds

= C(1 + et follem + C fo (t — $)e=< =9 F()m-2 ds,

etc. Eventually we will have the following: for some ¢g > 0

t
(3.309) N @)Mem < cemcotfifollem + 0/; e 0= f(s)fe,0 ds.

Using (3.308) on the right side, we obtain (i) under the additional assumption.
Now replace fo by xrfo where xg = 1 on {|v| < R} is a characteristic function.
For fr(t) = e~ tBxprfo we get with a coustant independent of R

(3.310) IR les < o1 +6)=3/4 (Mfolles + i foll 2o L1 2)) -
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But

(3.311) fr(t) — e~ tB fg in C? ([O, 00); Bg) as R — oo.

This proves (i).

For (ii): it suffices to assume as above that hy, hs have compact support
in v. So again

(3.312) hi € €0 ({0, 00); BS), i=12 forall a8
Abbreviate g = I'(hy, h2). Then since & — 1 > 3/2 and ¢(1 + |v|) < v(v),

(3.313) Hglle < clglea—r < cllv'glea < chhillealhalea

Here in the last step we used Theorem 3.8.1.
Next we claim that

(3.314) lgllly < cllhiflo.allhzlo,a for a >5/2.

To get this, we want to bound

(3.315) el = ( j 190,01y dv)w.

For the gain term Fgainv we have using (3.141)

(3.316) /ngain(h.l,h2)|dx:/‘//qulm(u)hl(u’)hz(v’)dwduldx
v)-o / / [ a2y s ) 0o o) do s

c(1 + |}~ (///qylﬂ u)( '>2ah2(u')dwdud$) /2
(/// a2 (u){v')2h3 (U')dwdud:c)

< (L + ) -2fhaflo.allR2llo.q-

(Recall that [ gdw = 0(ju — v})).
Now square and integrate in v: The result follows because

(3.317) / (1+p))2-22dv<oco for a> g
RS

Since the loss term is easy to handle, we omit its estimate. This proves that

(3.318) Nl = ME(R1, A2)]llx < ellhiflo,allR2llo.q-
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Therefore
(3.319) g =I(h1,h2) € CO ([o, o); BE_ N Lw) for all > 0.
Hence

- t
(3.320) () E/ e~(t=")Bg(r)dr

0

is a solution of f; + Bf = g with zero data and
(3.321) feco ([0,00); Bf;_l) NCt ([0,00); Bf;‘_lz) , forall a>g.

Also Pog = 0 because Pol'(h1, he) = 0. Therefore by the L?-decay estimate,

(3.322) 108 <c / (1t )2 (gl + g )2 dr
Let

(3.323) n(t) = mOm©); m(0) = Pilles.e

Then

(3.324) glle < b lealihzlen < c(1+6)=3/2n(1)

and

(3.325) gl < clihslo.clihzlon < o1+ £)=3/2n(t).
Therefore

(3.326) 108 < / (14t 7)) (1 4 1) S dr

< (14 t)=3/2n2(¢).

Thi§ is the L2-version of (ii). To strengthen it: write as before the solution f
to fi + Bf = g with data fo =0 as

t
(3.327) flt,z,v) = / e~V Kf + g)(,x — v(t — 7),v) d.
0
Let

¢
(3.328) G(t,z,v) = / e~vt-Ng(r, x —v(t — 7),v)dT.
0
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We claim that for 0 <m < (3,
(3.329) IG@)lle;m < (1 +1)=3/2n(t).

Indeed,

16, )le < fo e~ g(r, -, v) e dr

e—v(v)(t—1)
dr.

) supl Ol a1+ - [ S

Now v(v) times the integral here equals

¢
d dr
3.330 —e~v()(t~-Ty . T
( ) /0 dre (1+7)3/2
e—viv)(t—7)

t 3 [te-vlv(t-7) d
T (14 7)3/2 0+§/0 (1+7)5/2 g
< ¢(1 + ¢)~3/2 uniformly in v.

Therefore

G- Dl < o +)-2sup | ey o)
< {1+ )73/ sup {gv=Hem - (1 +7)702)
<t
< o192 sup {1+ 1)/ Fhsllem - (1 + 709/ Whelm )
= oL+ £)=/2 (1) - ma(t) < (1 +2)-3/2n (1)

Now recall that

(3.331) WK fem < clfllem-1, and
IK flheo < el flle.

Therefore for 1 < m < j3,

t
(3:332) 1Ol <c [ est=DRf(r)ldr + (1 +)2/2n(e)
0
t
B Elem < C/ e~ U= F(7)le,m—1dT + c(1 + £)3/2(t).
0
We iterate this as before to get part (ii) of the lemma.

3.14. The Major Theorem
Finally we can state and prove the main result.
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MAaJoRrR THEOREM 3.14.1 Assume the hard-sphere case. Assume that fo €
B{NLY2 for some €> 3/2, B> 5/2. If || folle.s + 1L folllr is small enough, then
the (BE)

(3.333) fe+v Ve f +LIf]=T(f, ), f(0,z,v) = folz,v)

has a unique global solution
(3.334) fecCo ([0,00); Bg) nCt ([O,oo); Bf;‘_ll)
which satisfies

(3.335) 1f @) les < c(1 +8)34(l folle.s + Il folll)-
Proof. We show this iteration converges: f0 =0,
t
(3.336) fr(t) =e-tBfy +/ e~(t=T)BL(fn-1 fr-1)dr  (n=1,2,...)
0
Let
t
(3.337) Qf =etBfy +/ e~ (t-T)BD(f f)dr.
0

We know that the linear term satisfies

(3.338) lle=*5 folle.s < c(1 +¢)=3/4 (I folle.s + II{folll1)

and that for

(3.339) ft) = /Ot e~(t=T)Bg(r)dr, with g¢=T(h1,ha),
we have

IF(Dles < e(1+8)=3/4 sup(1 + ) ha () e, ~sup(l + )3/ 4o (T)le.s-

Therefore

(3.340)  (L+6)32f (t)ess < c(lfolles + Il fo]ll1)

2
+c [sg;t)(l + 7’)3/4mf(t)m£,5] :
For 6 > 0 let

(3.341)  Xep= { f € ¢ ([0, 00) Bg) sup(1+ )Y (e < 6} .
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Then from (3.340) we have for f € X¢

(3.342) 121 xe6 < colllfolle,s + Lfolll] + erlifI%, ,-

Assume that

é
(3.343) Ifolle.s + N[ folll < 5~
0
Then
(3.344) Nfllxe s < g +c162.

Take 6 < %; to get

) 1
(3.345) W fllxe s < 2 §- 5= 6.
Hence
(3.346) Q : X¢p — X¢pa for such 6, fo.

To see that € is a contraction, recall that I' is bilinear and write

(3.347) L(f2, fo) =T(f1, /1) = L(f2 = f1. f2) + T(f1, f2)
-T(f1, fr = f2) = T(f1, f2)
=L(fa = fi, f2) = T(fi, /r — f2)-

Thus

(3.348)  Qf2 -Qfi = / e~ =B [(f2 ~ f1. f2) + T(f1, f2 = fr)] dr.
]

We apply the above estimates with hy = fo — fi, ho = f2, etc. Thus Q is a
contraction on X¢ g for § sufficiently small; its unique fixed point is the desired
solution.

3.15. The Relativistic Boltzmann Equation

In this section we write down the relativistic Boltzmann equation and state two

of the major theorems known regarding asymptotic stability of the equilibrium.
The relativistic Boltzmann equation is

(RB)o V.VxF=-C(F,F).

Here the dot represents the Lorentz inner product (+ — — —) of 4~vectors,

v = (v1,v2,v3), V = (vo,v1,v2,v3), X = (20, 21,2,23), T = (z1,x2,23),
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zo = —t and C(F, F) is the collision integral. Normalizing the speed of light
¢ =1 and the particle mass m =1, we have V-V =1 or vg = /1 + |v]2.

Fig. 3.2 The Collision Hyperboloid

It is convenient to separate the time and space variables and to divide
(RB)o by vo to obtain

(RB) OF +10-VoF = Q(F,F)

where Q(F,F) = vy 'C(F, F) and

(3.349) ==
vo /14 |v)?
Q(F, F)(v) = 2—1~ /// §(U2 = 1)6(U” — 1)8(V'2 — 1)s0 (s, 8)-
Vo
(3.350) WU +V —U' =V [F(u)F(v') — F(u)F(v)] dtUdAU d*V

where U2 = U - U = ud — |ul?, |ul2 = u? + v + u3, § is the delta function in
one variable, 64 is the delta function in four variables, and all of the F are
evaluated at the same space-time point (¢,z). Furthermore o(s,0) is called the
differential cross section or the scattering kernel; it is a function of variables s
and @ which will be defined below. The delta functions express the conservation
of momentum and energy:

(3.351) WHv =u+tv
VIH R+ I+ R = V14 u?+ 1+ )%
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Of course, the 12-fold integral in (3.350) defining Q may be reduced to a
5-fold integral by carrying out the delta function integrations (see below).

A relativistic Maxwellian is characterized as a particle distribution p(v)
which minimizes the entropy subject to constant mass, momentum and energy.
It is an equilibrium solution of (RB) since Q(u, 1) = 0, and it has the form

(3.352) p(v) = ertbv—ev/ithul

where @ € R, b € R3 and ¢ € R¥, ¢ > |b| are five parameters (constants).

We consider at first a solution F(t,z,v) of (RB) which has period 27 in
each z variable and satisfies an initial condition F(0,z,v) = FO(z,v). We
assume that the initial distribution F°(xz,v) is close to a Maxwellian u(v).
The 5 parameters a, b = (b, ba, b3) and ¢ are chosen so that F? and p have

the same total mass, energy and momentum:
(3.353)

0——://(F0—p)dxdv=f/v(ﬁ’”-u)da:dvszm(F0~u)da:dv

where the integration is over z € B = (0, 27)3 and v € R3. See Theorem 3.15.3
below. The periodicity condition in z implies that (RB) has been solved in a
box with specular boundary conditions.

As was seen earlier in this chapter in the classical case, the proof of asymp-
totic stability is based on the fact that the linearized equation possesses some
dissipation, due to the increase of the entropy.

In the relativistic case, we write the linearized equation of (RB) as

(3.354) Of+0-Vof +tv(v)f+Kf=0

where K is a certain integral operator in v, and v(v) > 0 is a scalar function of v
which represents the dissipation. In order to prove dissipation on the operator
level in the sense of spectral theory, one needs compactness properties of the
solutions of (3.354). Compactness in the v variable follows from the form of K,
while compactness in the x variable follows from the fact that v-averages of
solutions of transport equations tend to be z—smoothing. The precise condition
used is a kind of relative compactness of operators, called A-smoothing. To
some extent one can follow the abstract approach that Shizuta [49] applied to
the classical Boltzmann equation.

For background on the relativistic equation we mention the book of de
Groot et.al [16]. The linearized relativistic equation (3.354) is solved by
Dudyrniski and Ekiel-Jezewska [22].

Below we explicitly write the equation and state the collision invariants
and entropy inequality. Then the form of the linearized equation is specified,
and the function spaces and the main theorem are formulated. Details may be
found in [29].
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Let us begin by defining the remaining variables in the collision integral
(3.350). We define

(3.355) s=(U+ V)2 = (up+ v0)? — |Ju+v)?
= 2ugvg — 2u - v+ ud — |ul? + v — |v|?
o TT RPVITE — v+ 1)
(3.356) 4g2 = —(U -~ V)2 = —(up — v0)? + |u — v|?
= 2ugug — 2u - v — u3 + [u|2 — vg + |v|?
2 TT TPy TF P — v~ 1)

=s—4,

and

(3.357) cosg= L=V U

(V-U)?

Furthermore, we define the Mgller velocity as the scalar vys given by

L e o S(8—4)
vy =0 -a2-|oxa?= e
or
2gv1 2
(3358) VN = —g-——+—g

VoUqQ

The two expressions for v2, are equal because

1
23(3—4) = 892 = (upvo — u- v+ 1)(uovo —u-v —1)
= |u? + |v]2 + |u|?|v|? = 2upvou - v + (u - v)?
= ud|v|? + v3|u|? — 2upvou - v — |u x v|?
2 |ul? u v u v |2
U5 Uy Uo o ug Vo
It may not be a priori clear that the expression for cos# is well-defined.
We study this is Lemmma 3.15.3 at the end of this chapter.
In de Groot et al. [16] the delta function integrations in the collision
integral are carried out, resulting in the equation

(RB) 5tF+17'VzF=/ / vpmo(g, 0) - [F(w)F (') — F(u)F(v)] dQdu
R3 JS2

where dQ2 is the element of surface area on S? and we have written o as a
function of g and #. The variables u, v, u’/, v’ are related by the equations
(3.351). These equations allow v’ and v’ to be written in terms of u and v and
a pair of variables 6 and ¢ which run over the unit sphere S2. Equation (RB)
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is the result of one such representation. A slightly different representation is
given in Appendix II of {29]. Indeed, we may write for a vector (2 € S2

(3.359) w =u+a(u,v,N)Q, v =v-alu,v, ).

With the help of [28], we set

e=v1+[u2+ 1+ [v]2

and obtain

o 200 (o ) TTRP /TP
a(u, v, Q) = 2 — (2 (v +u))? '

Another difference from the classical situation is that the Jacobian is no longer
unity. Indeed, from [28] we know that

B, v) 1+ w1+ ]2
Nu, v) V1+[uZ/1+ 2

We remark that in the center—of-mass coordinate frame where u + v = 0,/s
is the energy, —2g is the relative momentum, and 6 is the scattering angle.

In the classical limit, where |u| + |v] << 1, we have s ~ 4+ |u— 1|2, so that
vm ~ |u — v| and (RB) formally becomes the classical Boltzmann equation.

The collision invariants and the entropy are essentially the same as in the
classical case, modulo the form of energy conservation. Define the symmetrized
collision operator
(3.360)

Q(f.0) =3 / f varalf(w)g(u) + Fu)g(v") — F(@)glee) — F(u)glv)] dudS.

The collision operator in (RB) is Q(F,F) = Q*(F,F). For example, for f. g
smooth and small at infinity, the collision operator satisfies

/Q"(f’g)dwﬂ, /v@*(f,g)dv=o, /¢1+|v12 Q*(f,g)dv =0,
[auna+iogpav<o.

Thus it follows that, for the solutions of (RB), the mass f Fdudr. the mo-
mentum [ vF dvdz, and the energy [ /1 + |v[2 F dvdz are invariants. Fur-
thermore [ F'log F dvdx is a non-increasing function of .

The linearization proceeds as follows. First of all, we may normalize the
Maxwellian to be

(3.361) p(v) = e~ VI
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As we did earlier in this chapter, we change variables from F to f by

(3.362) F=p+auf.

Substituting this into (RB), we have

Of+0-Vaof = —1~Q*(u+\/ﬁf,u+ vif)

i
- %Q*(u, Viif) + —\/I—EQ*(\/ﬁf, VES)
or
(3.363) Of +0-Vef = —v()f — Kf +Q(f.f)
where

Of.1) = —Q (VES, Vif)
(3.364) = / [ 0.6/ ()1 () = S 0)] du

Ugvo

(3.365) g, 0)p(u) dudf?,

o= [ 2

and, with o abbreviating o(g, 9),

(3.366)

K f(v) = / f ALY o/ = V) VW) + V) ()| dude.

UQUg

If F is a solution of (RB) and f is defined as in (3.362), then we have

(3.367) Ozf/ﬂfdvdxz//v\/ﬁfdvdxsz V1 + [v2VEf dvdz.

The entropy implies the following dissipative property of the linearized opera-
tor L=v+ K:

(3.368) /(—u —K)f(v): f(v)dv <0

for any function f(v) which satisfies (3.367).

The solution spaces are defined as follows. In the z variable we use the
space C* of periodic functions whose kth derivatives are continuous, or the
Sobolev spaces H* of periodic functions whose kth derivatives belong to L2.
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Let X denote either C* for k > 0 or H* for k > 2. Let pa(v) = (1 + |v|2)2/2.
Define G, (X) as the space of continuous functions f : R3 — X for which

£l = sup pa(v)|f(v)ix < .
veR3

(Earlier in this chapter, when X = H*, we called these spaces BS = L (v, HY).
Since the space X can be chosen differently in this section, we use the different
notation of G4{X) to avoid confusion).
Furthermore define G%(X) as the closed subspace of Go(X) for which
m pa(v)|f(v)lx =0,

jv]|—o00
furnished with the same norm. Let
(3.369) Y = either GS(H!) or G%(C¥).

where ¢ > 0, k > 0 and £ > 2.

We now state the hypothesis on the collision cross—section o{g,#). 1t is to
satisfy

A+1
(3.370) a1 f+ P sin” 8 < 0(g,0) < ca(g? + g=%)sin” 8
and
(3.371) ‘g%‘ < e3(g% +g-%)sin? 0

where ¢, co and c3 are positive constants, 0 < 6 < %, 0<p<2-2560<¥<
4, 8’ > 0,4 > —2, and either y > 0 or

(3.372) ~ <min{2~ﬁ, %—6, %(2-25—5)}.

Now the main theorem can be stated.

THEOREM 3.15.1 ([29]) Assume that 0(g, 0) satisfies (3.370)-(3.372). Let
Y be either of the spaces (3.369), where o > %(3 + 8). If f0 €Y satisfies
(3.367) and || fOlly is sufficiently small, then there exists h > 0 and a unique
global solution f(t,z,v) of (RB) which is periodic in x and satisfies f(0,z,v) =
fo(z,v), f € C([0,00); Y') and

(3.373) W Olly < ellfollve-ht, 0<t< oo

The required estimates on the collision operator are similar to those in the
classical setting. Indeed, under the hypothesis (3.370) - (3.372) on o, we have
the following estimate. Consider any of the spaces

GO(H?) or GL(C*)
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fora > /2, ¢ 2~2, k > 0. Let || - |lo be the norm in any one of these spaces.
If f € GY, then Q(f, f) € G® ,; and
x=73

(3.374) QU Alla_s < ellfI3-
The map Q is continuous from G% into Gg_ 82> in fact

(3.375) 10, ) = Q9. 9ila_s < clllflla + liglla)llf = gllo-

Next we specify the relevant integral operators. Recall that the equation
for the perturbation f (using F = p + p!/2f) can be written as

(LRB) fo4©-Vof = —v(0)f - Kf+Q(f, )
where

(3.376) V() = / / 91+ 9%0(9.8) ) duan

upvo

and (with o = 0(g,8))

(3.377)

1+g2a (u
Kf=- / / 7 50!)0 Vi) [ @) (') + /i) () - \/u(v)f(u)] dud2,

Here ug = /1 + |u|?, vo = /1 + |[v]2. We define

1
(3.378) ¢ = Lo + vo) and j = 3¢
2 2g

Then from [16], [22] we know that K f = Kaf — K1 f, where K, 7 are the
integral operators

(3.379) Kif(t,2,v) :/ ki(w o) f(t o) du (i=1,2)
R3
with the symmetric kernels

gv1l+giet
REALI N

UpTVo

(3.380) ky(u,v) = c / o(g,6) sin 0 db;
Q

. 23y3/2 oo </ 2
(3.381) ko(u,v) = “—2(—1i3—)—/ et 1”20( - g!e ,w) Wit vty )Io(jy)dy
grovo 0 sin( %) V1+y?
where
(3.382) sin (Y) - V29
2 (g2 — 1+ (g2 + 1)yT + y21/2
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and Iy is the Bessel function of the second kind of order zero.

In order to estimate the kernels, we use the following elementary inequali-
ties:

, llu x 0|2 + Ju — v]2]*/? 1

(4) <g<slu—v
Qué/zvé/z 2
29/ 2
(1) UM = M_ <2
uovo

. g?+1
(#4t) 2 — j2 = u—v?
(1v) €2 — j2 > max{g? +1, %[u - v|2}
(v) fgu + Yt < =T < (g2 1)L+ )

sin( %
(vi) cos kd >_ ¥
2 1+y

We establish the bounds on g only. The bound ¢ < %lu — v| is equivalent
to 4¢2 < ju —v|?, i.e, to 2ugup — 2u-v — 2 < lu —v|?, ie, to

uprp <u-v+14 - IU—U|2_'1+ (Ju? + |v]?).

Squaring both sides, we obtain the upper bound in (7). For the lower bound
in (7), we write

(Lt [uf2)(1+ o) = (14 - 0)?
ugvo +u-v+1
S |u|?2 + |v|2 + u)?|vl2 = 2u - v — (u - v)?

292 =

2ugvo
= )2 4 u x v

2upvo

From these bounds and the assumptions on o, one obtains the following esti-
mates:

i) There is a positive constant ¢, depending only on =, 3 such that
c‘lvg/2 <w(v) < cvg/2

for all v € R3, where vy = \/1—+ lv|?,
ii) There is a positive constant ¢ such that
e“%l

kl(u ’U) < I———vlg,
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iti) There is a positive constant ¢ such that

ka(u,v) < c(1+ lvl)w . e—clu—v]|
2(u,

= [lu x |2 + Ju — v|2]V/ 2|y — p]EHI

provided [y + <2, |y <2ify> 0.

As a Corollary, we see that the kernel k1 may be taken to satisfy the same bound
as k2. These estimates require careful study of explicit integrals involving
Bessel functions.

Lastly we list several integral properties of k(u,v) = ka(u,v) — ki(u,v)
which can be used as in the classical argument:

i) k{u,v) is a symmetric kernel,
ii) sup, [|k(u.v)|du < oo,
iit) sup, [k2(u,v)du < oo,
iv) [ 1k(u, v)[(1+ Juf2)=2/2du < (1 + |v|2)~2(e+" for any a > 0, where

1
n=1—§[3|7|+ﬁ+26]>0.

This concludes our brief sketch of the set-up for (RB) near equilibrium in
the case of periodic boundary conditions. The proof of smoothing is omitted;
we refer to [29] for details.

Now we turn to the study of the pure Cauchy problem for (RB) near a
relativistic Maxwellian. Although some of the basic estimates above can be
utilized, the method of proof is fundamentally different from the periodic case
because smoothing operators in unbounded space lose their compactness and
therefore the decay to equilibrium is no longer exponential. One can extend
Kawashima's proof (done earlier in this chapter) to the relativistic case, thereby
obtaining smooth solutions which tend to equilibrium. Recently Andréasson
(1] has also studied the approach to equilibrium of the general weak solutions
of (RB). This is analogous to the non-relativistic proof in [42] and is based
on a regularizing property of the gain term. Furthermore the nonstandard
approach of Arkeryd (3] is put into context for the relativistic situation.

An energy estimate is the most direct way to exploit the increase of entropy.
For the linearized equation, we have seen that, the entropy increase corresponds
to the property (Lf. f) > 0. However, the entropy is difficult to exploit because
of the five-dimensional nullspace of L. After Fourier transforming in the z vari-
able, we have seen in Kawashima’s approach the construction of a modified
energy form which is positive definite. The modification is accomplished via a
compensating function, an operator of finite rank using 13 moments which are
related to the streaming term. In the relativistic case one requires 14 moments
because the relativistic energy /1 + |v|2 depends nonquadratically on the mo-
mentum v. The construction of the relativistic compensating function then is
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coupled to the estimates on L and Q from above to obtain a ¢~3/4 decay rate,
first for the linearized problem and then for the noulinear one.

The hypotheses on the scattering kernel are slightly different in this case.
We assume that o satisfies the following:

gﬁ+1
(3.383) T p

sin” 8 < 0(g,0) < c2(g® + g—%)sin"

where ¢1, ¢z are positive constants, 0 < § < 1/2, 0 < 8 < 2—26 and either v >
0or |y] <min{2 - 8,3 -6 (2~ 26 - B8)}.

We use | || to denote the norm, and ( , ) the inner product, in LZ(R3).
H*(R3) denotes the usual Sobolev space with norm || ||x . For functions
f(z,v) depending on both variables we take norms first in zr and then in v.
Thus L9(LP) denotes L7(R3; LP(R%)). We use the special notation

(3.334) ANk = L/ WG wliE de

for the norm in L2(H*). We will use the same weighted L spaces Gq(H*)
and G3(H¥) from above.

In terms of these spaces we now state the main result. Recall from (3.362)
the definition of f in terms of u and F.

THEOREM 3.15.2 ([30]) Write Lf = v(v)f+ K f and consider the Cauchy
Problem

1/2

(RB) Of +9-Vaf + Lf =Q(f.f)

f(0,z,v) = folz,v).

Assume (3.383) on the scattering kernel 0(g,8). Let k > 3/2 and o > (3+3)/2.

Let fo € GS(H*)NL2(LY). Then there exist constants co > 0, ¢ > 0 such that
whenever

2 1/2
(3.385) | follc..crry + {/ (/Ifoldiﬂ) dv} < e,

the Cauchy Problem has a unique global solution
f € CO([0,00); GR(H*)) N C([0,00);GH_y (H*1))

which tends to zero according to the estimate
(3.386)

2 1/2
1 Ollg ey < (1 +1)=3/4 (llfollca(Hk)+{ / ( / |fo|dx> du} )
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for 0 <t < oco.

As in the non-relativistic case the proof begins with the construction of
the equations for the 14 moments. We know that the nullspace N(L) of L

is spanned by the five functions /i, v; /i (7 = 1,2,3), /1 +|v|]2 /u. We
regard N(L) as a subspace of LZ(v) and we let Py be the orthogonal projection
onto N(L). The subspace W of 14 moments is defined as the space generated
by N(L) and the images of N(L) under the mappings f(v) — ¢;f(v) (j =
1,2,3). Thus

(3.387) W =span{z ;] j=1,...,14}
where
(3.388) 1 =1, wjr1 =v5, 5 = V1+ |2, w545 = v;0;,
Yg = vlf)g, w10 = 1)2{)3. @11 = vgﬁl, (p11+j = lA)]' (] = 1,2, 3).

Then WoON (L) and the operator of multiplication by v - £ maps N(L) into
1. for each £ € R3. We denote by P the orthogonal projection of L2(v) onto
. An orthonormal basis for N(L) is:

e1 = K1y, €j+1 = Kjr1v5/i (5 =1,2,3),
3.359) j+1 = KoV
es = ks(V 1+ |v]?2 —es) V1,
where K1, ..., K5 are normalization constants and ¢s is chosen so that (es, e1) =
0. That is,
V14 jv[2pdv
(3.390) S [vPpdv
fudv
An analogous computation to that earlier in this chapter shows that an
orthonormal basis for W is given by e;,...,e;q where e;,...,e5 appear in
(3.389) and

€ — Nﬁ[(vl‘fh — 1)#1/2 - d6€5}
e7 = k7|(v202 — 1)pt/? — dges — dreg)
es = Kg[(vats — 1)u!/? — dges — dres — dzer)

1/2

eg = Kkou102u1/2 | €10 = Kiovel3pl/?, e11 = kivstipl/2,

et = K45 (05 — cnggup)pt/? (5 =1,2,3)
where the ; are normalization constants and ds, d7,ds, c12, 13, 14 are other

constants.

Again in analogy to the classical situation, we now project the Boltzmann
equation onto W and write the result as an equation for the Wy = (f,ex).
Indeed, let f(t,z,v) satisfy the linear equation

(3.391) Of +9-Vof +Lf =g, Lf=v()f+Kf.
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Then, formally, W = [W1, ..., Wi4]7 satisfies the equation

3
(3.392) W+ Vide W+ LW =g+ R

i=1
where Vi (i = 1,2,3) and L are the symmetric matrices
14

Vi= {(i’iej, ek)}, L= {(Lej’ffk)}

3
Jik=1

14
(3.393)

doke=1]

g is the vector with components (g,ex), and R is a sum of terms involving

(I—-P)f.
Because our goal is to take the Fourier transform of equation (3.391) with
respect to x, we study the 14 x 14 symmetric matrix with entries

(3.394)

(Ve = ((7-&ej,er) (1 <4,k <14).

Explicitly, the matrix V(£) = Z‘:’zl Vi¢; has the following structure. We write
it as

(3.395) V(E) = [Vu(i) Vu(&)}

Vai1(§)  Vaz(£)

where Vi1 is 5 x5, Vo is 5 x 9, Vo1 is 9 x 5 and Va3 is 9 x 9, the submatrices
Vi1 and Vpp are symmetric and V;; = Vi2. Furthermore,

0 m& mé& mé 0
méy 0 0 0  a&
V() = |mé& 0 0 0  aé
méz 0 0 0 a3
0 a1 afx af3 O
0 anéh axfy a3és 0 7
0 0 a2 anf O
0 0 Q azéz O
0 b&a b 0 0
Va1{€) = 0 0 bEs bés g
0 b3 0 b 0
& 0 0 0 da
d'&s 0 0 0 d&
(d€s 0 6 0  d&sl

where m, a, b, d’, a11, az2 and azs are positive constants and d < 0.
At this point in the argument the compensating function itself can be
constructed. Its use is the same as in the non-relativistic case, so we omit it.
We conclude this section with two arguments special to the relativistic
case. We show that the Maxwellian parameters can indeed be determined in
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the case of periodic boundary conditions. Then we show that the scattering
angle 8 from (3.357) is well-defined.

For the determination of the Maxwellian parameters, we must solve this
problem: we are given a smooth nonnegative function Fo(z,v), periodic in z
and decaying in v. We seek 5 parameters @ € R, b € R3 and ¢ > |b] such that

the function
pu(v) =expla+b-v—cy1+|v)?)
satisfies (with B = (0,27)3)

0=[/B{3(F°—u)da:dv
//R? 0 — p)dxdv

:/B/w VIR (FO — ) da dv.

We write e* = a. Then we need to solve
(3.396)
A= //Fﬂdl‘dv: (27)3a ebv—ey/ T2 do,
= //UFO dzx dv = (27)3a /veb‘”’c\/l_Jrlv—lE dv,

C = //\/1 + |2 FOdz dv = (27r)3a/\/1+Iv\266'”’c\/1+‘“|2 dv

for a = e2,b,c.

THEOREM 3.15.3 ([29]) The nonlinear system (3.396) always has a solu-
tion a. b. c.

Proof. First we show that the relation
A? + B2 < C?
among the given parameters must hold. For this purpose, consider the measure
dpp = po exp(b- v ~ /1 + ol?) dv

where b € R3,¢ > [b] and wo is a constant for which [p, du = 1. Then
A? 4+ |B|?2 < C? is the same as the inequality

(Jor) | f o < ([ viemen)
1+‘/vdu' (/ (Jo]) d,u)2

ie.,
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where @(s) = V1 + s? is strictly convex. Since | [vdu| < f |v|dy, it suffices

to show that
\/1+ (/ Iv|du)2 < [ elivhan

This is just Jensen’s inequality, and we are done. Now we show that the
condition A% + |B|? < C? is sufficient for existence.

Define I(b,c) = (27)3 [ ?¢VIH*Fdy. Then I depends only on jb| and
¢; we write I(b,c) = I(|b],¢) and calculate

oo k:8
I(|bl, c) = (2m)3 / / p? sin felblpcosO—cy/1+0% 4g 4
0 0

2(12;;)3 /Ooopsinh plbl)e” \/II”_dp

i

The 3 equations can be rewritten as

(3.397) A= ald(lb],c)
b ol
(3398) B =aVpl = OHM
oI _ o
(3.399) C= age =0

We choose b parallel to B. Then (3.398) becomes a scalar equation, and we are
reduced to 3 equations in 3 unknowns o, [b| and c¢. Then by (3.398) we have
b- B = albldh, or

(3.400) +1B| = o g‘;

Now we can evaluate [ in terms of Bessel functions. For fixed |b| and
¢ > |b|, consider

18] = = —ey/TapE___dp
- I(b,r)dr = psinh(p|b|)e PP
16 c 0 14+ p2
_/w 2162 sinh(p|b}) ecVite? cet2(1 4 p?)/2 dp

o 1/2lb|1/2 01/2(1 + p2)i/4 /T4 2

N \/—/ (1+ 2)1/4 ‘(p‘bDKl(c\/l—'*’?)dp
=% \/u)_lg./o WJ%(ip]b])K%(c\/l_rp;)dp

If the argument of the function J ;( .) here were real, the integral would
be known (cf. [33], p. 706, #7). Under the assumption that ¢ > |b| (to
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be verified below at the solution) we can justify an analytic continuation to
complex arguments, and get for the right-hand side

1
blc-e'1 c?2 — b2
5 /bl r———'bp (v )
_ —c\/%*szK‘(‘/Cz ~ToF)

since K_, = K,. Now call r = /c? — |b|2. Differentiating with respect to c,

we get
(el = i |22

1673 b 'ac
d c
= |b|£[$‘lK1($)];

ble
= —-L:Ijl'* -1‘"11(2(1‘)
and hence
(3.401) (b, c) = 167 3CK2( z).

We abbreviate this by

I(jbl,¢) = cg(v/e® — [b]?)

with g(y) = 16m3y—2K,(y). Thus

el — L e
ol 2

e = 9le) + g (1) = 9(@) + Sg()
We know that %(m‘sz(x)) = —z~?K3(z) < 0. Hence a_am > 0 so that
equations (3.397)-(3.399) become
(3.402) A=acglr)
(3.403) 1) = - Wiz

xT

7 C2
(3.404) C=-a (g(x) + ;g’(m)) )
Dividing the last two equations by the first, we get
(3.405) B_ W gle),

z g(x)’

A
(3.406) _ % _1, 9@

c ;g(:r)
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Now solve (3.405) for gg_' and put the result into (3.406):

_C_1_ cf_ =Bl
A ¢ z| pAal

so that

c2| B

(3.407) bl = bl = -,

Since A > 0 and C > |B|,

2| B| < 2| Bj <
c.

blo)l = 4566 < e

Thus any solution ¢ generates a solution [b] = |b(c)| for which the condition
|6] < ¢ holds.

It remains to solve for ¢. By recursions for the Bessel functions.

g'(z) _ (72Ka(x)) _ x72Ks(z) _ Ks(x)

g(z)  z72Ka(z) 7z ?2Ka(z)  Ka(z)

Therefore (3.406) can be rewritten as

Ko (x) Ac?

(3.408) Ki(x)  A+Cec

Since |b| = |b(c)| is known from (3.407), (3.408) is an equation in ¢ alone. In
fact, by definition and (3.407),

ct|Bj|?
2 =02 _ P2 =2 — 121
=t pE=c (A+cC)?
so that

_ __° 2 _[Bl202
(3.409) x = z(c) A+CC\/(A+CC) |Bj2¢? .

Now consider (3.408) rewritten as gq(c) = 0, where

Ac? :E(C)Kz(:l?(c))'

(3.410) 1) = 150~ Ka()

From (3.409) we see that

/C2 — B2
lim E:—gc—)zl, lim x(c)= ¢ Bl .

c—0t C c—00 ¢ C

From the series definitions of the Bessel functions, we have near y = 0,

yKa(y) _y-3(8) " _ (g)2
A ) R
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Thus as ¢ — 0,

1
ae) ~ &~ ()t ~ e

and therefore g(c) > 0 for small ¢ > 0.
For large arguments, both K2(y) and K3(y) have the asymptotic represen-

tations ‘/5"5 e~ ¥, As ¢ — oo then,

C

A JCEZIBP
c

q(c) ~ o z{c) ~ ¢

As was shown at the beginning of the proof, this is negative. Since ¢ is con-
tinuous in {c > 0}, we are done.

Lastly. we show that the scattering angle defined by

V-U) (V' —U")
(V-U)?

(3.411) cosf = (

is well-defined.
We are dealing with 4-vectors

V = (vo, 11, v2,v3) = (v, V)
where vg > 1 and the Lorentz inner product is given via
(3.412) V- V=vl-?2=1
The scattered variables U’, V"’ satisfy (3.412) and

(3.413) U+V=U +V.

LEMMA 3.15.1 Let V-V =U -U =1. Then

Py U-vV>1
i) (U=-V)-(U=-V)<0

Proof. We have
T+ ju)2 4+ (vl + u?2v)2 > 1+ 2u-v+ (u-v)?
and hence
udvd = (1 + Ju))(1 + [v)2) > (1 4+ u - v)?

so that
wovo > [l +u-vj>14u-v.

Equality holds only if « and v are linearly dependent. However, this cannot
occur since both lie on the hyperboloid.
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For the second assertion we have
U-vV)-(U-V)=21-U-V)<0
by the first part. This assertion means that I — V is spacelike.

LEMMA 3.15.2 Let V, U, V! and U’ satisfy (3.412) and (3.413). Then
) (U=V)-(U=V)= U=V (U = V)
w) U-V=U" -V
wi) U-U'=V.-V
Proof. The parallelogram law gives us
U-V)-(U-V)=20-U+2V-V-(U+V)-(U+V)
=2U-U' 42V . V' — (U + V") - (U + V")
= (U -V (U - V).

This is the first assertion. For the second, we have

U-V)-(U=V)=U-U+V-V-2U.V
=2-2U-V

and similarly
(Ur-vhH - (U'=-vn=2-20"-V'.

Now the second assertion follows from the first.
Lastly, by (3.413) we get

-0 U-U)y=(V'-V)- (V' =V).
Expanding this, we have
1+1-2U0-U'=1+1-2V".V

as desired.

Using (3.413) we can write

(V=U)- (V' =U)==(V+U) (V' +U)+2V -V +2U - U
=—(V4+U)-(V+U)+2V -V 42U - U
=(V-UR-2V.V-2U -U+2V.-V' 42U U

where we have used the parallelogram law in the last step. Therefore
(3.414) (V-U)-(VI-U)Y=(V-U)-(V-U)—-4+4V . V"
Now we are in a position to estimate the scattering angle. Recall that

(3.415) s—4=-(V-U)-(V-U)=4g4%2>0.
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Lemma 3.15.3: Let the scattering angle be defined as in (3.411) above.
Then we have
lcosf| < 1.

Proof. Applying part (1) of Lemma 3.15.1 to the vectors V and V’, we
have V - V' > 1. Hence by (3.414)

(V_U)- (VI = U >(V =U)- (V= U).

By part (2) of Lemma 3.15.1 then, cos@ < 1.
Now we claim that cosf > —1. By (3.411) and (3.414) we have

COqo__(V—U)-(V’—U’)__1+ 4V -V =1)
WV -u)-(v-u) (V= U)(Vv-UY
Thus cosf > —1 if and only if
V-1
(3.416) LU Y

(V-0)-(V-U)

(3.416) holds whenever
V-V’—l<v—12—(V—U)-(V—U):U-V—1

and this is valid whenever

(3.417) V- Vi<V.U, ije, V-(VI=-U)<0.

By the conservation law U + V = U’ + V', this is the same as

V. (V-U)<0, or 1-V. .U <0.

This relation is valid by part (1) of Lemma 3.15.1.
This exposition is due in large part to W. Strauss.
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Chapter 4
THE VLASOV-POISSON SYSTEM

4.1. Introduction
The Vlasov-Poisson system (V P) can be written as

(4.1) fe+v - Vef +4E-Vof =0 (z,veR3);
p(t, T) =/fdv,

1 [ (z-y)plt,y)dy
E(t,z) = —
t.2) 477,/ lz -y
f(0,z,v) = fo(x,v).
Note that E = Vou, u=—g—*p, Au=p (r=|z]). We take

- | +1  for plasma problems
| —1 for astrophysics problems.

(In plasma physics problems, we should actually have several species (as writ-
ten in Chapter 1), or at least a neutralizing background density.)

Here is a brief history of the mathematical solution of the Cauchy Problem
for (VP). The first paper on global existence is due to Arsen’ev [1]. He
showed global existence of weak solutions. Then in 1977 Batt [5] established
global existence for spherically symmetric data. In 1981 Horst [27] extended
global classical solvability to cylindrically symmetric data. Next, in 1985,
Bardos and Degond [2] obtained global existence for “small” data. Finally, in
1989 Pfaffelmoser [34] proved the global existence of a smooth solution with
large (unrestricted size) data. Later, in 1991, simpler proofs of the same were
published by Schaeffer [41], Horst [28], and Lions and Perthame [31].

A basic observation is the following. Take fo smooth and of compact
support in (x,v), and assume local existence. Put

Q(t) = 1 + sup{|v| : there exists z € R3, 7 € [0,f] such that f(7,z,v) # 0}.

A by-product of local existence is this: f can be continued to [0,T) (T arbi-
trary) provided

(4.2) Qt)<cer for 0<t<T.
117
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See Batt (5] or Horst {27]. Thus we need to control the influence of large
velocities.

Here is a statement of Schaeffer’s Theorem [41].

THEOREM 4.1.1 Let0< fo € C}, v = 1. Then the Cauchy Problem for
(V P) has a unique C1-solution, and for any p > %, there exists a constant ¢,
such that

Q(t) < cp(1 +1)r.

The rate of growth of Q) in time has been improved in (28] to Q(t) < ct Intl/14¢
for large t.

4.2. Preliminaries and A Priori Estimates

4.2.1. The Characteristics. The characteristics are the solutions to

dX
(4.3) — =V, X(t,t,z,v)=12x
ds
ud =~E, V(tt,z,v)="u0.
ds
Since
%f(s,X(s,t,x,v),V(s.t,w,v)) =fi+Vef X +Vf- V=0
we have
(4.4) flt,z,v) = fo(X(0,t,2,v),V(0,t,z,v)) >0

and sup, ,, f < || folloo, assuming that fo is nonnegative and bounded.

4.2.2. The Measure Preserving Property. The map

(z,v) — (X (8, t,x,v),V(s,t,x,v))

1

is a measure preserving homeomorphism. Assume this for now. For o € Lloc”

consider
IE/ f(s,y,wo(y,w)dwdy.
Change variables by

y= X(s,t,z,v)
w=V(s,t, z,v).

Then the Jacobian equals 1 and

= X(t,s,y,w)
v=V(,s,y,w).
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Thus

(4.5)1://f(s,X(s,t,x,v),V(s,t,.r,v))a(X(s,t,x,v),V(s,t,x,v))dvdz
2/ flt, z,v)o (X (s, t,z,v),V(s,t,z,v))dvdz.

Hence

(4.6)
// f(s,y,w)a(y,w)dwdy:// ft,z,v)o(X (s, t,z,v), V(s t,z,v))dvdz.
Similarly, let
J= // f(t,z,v)o(z,v)dvdx
and set

r=X(t,sy,w)
v = "/(t’svyaU))

Again this map has unit Jacobian and

yZX(S,t,.’L‘,U)

w=V(s,t,z,v).

Thus

J=//f(t,X(t,s,y,w),V(t,s,y,w))-
(4.7 o(X(t,s,y,w), V(t,s,y,w))dwdy

= / f(s y,w)o(X(t, s,y,w), V(t,s, y,w)) dwdy.

Now we return to the Measure Preserving Property. Actually this follows

directly because (4.3) is a Hamiltonian system, but we will proceed via a

computation. We need to evaluate the Jacobian Iaa((:x)) . We compute the

variational Ordinary Differential Equations: put

X - X+ey VoView:

d

(4.8) E—(X +ey) =V +ew
S

d

d—;(V + ew) = vE(s, X + ey)

Take (% and set € = 0 to get

(4.9) y=w
w=vEx (s, X)y.
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We abbreviate this as 4 = A(s)u where u = [y w|T.
Let U(t) be the fundamental matrix solution of (4.9). Recall that

t
det U(t) = det U(0) exp/ tr A(s)ds
0
=detU(0)-e® =detU(0) =1

because the trace of A vanishes identically. Hence this mapping preserves
measure.

4.2.3. The Energy. We have
(4.10) []2fe + v2v - Vo f +v|o]2Vy - (Ef) =0

and hence, assuming that f has compact support or vanishes with sufficient
rapidity at infinity, we find by formal integration

(4.11) (%//Ivl?fdvdx:27]/v-Efdvdw=27/j-Edz

where

(4.12) jt,z) = f vf(t,z,v) dv.
Now

(4.13) pt+V-j=0

follows from integrating (V P) over v. Hence ||p(¢)|l1 = const. Further, we
compute

(4.14) 2dt/|E|2dz—/E Etdx—/Vu Vugdz

= /uAutda:——/uptdx—/uV-jda:
~/j-Vudx=—/j-Ed:r.

(4.15) /f w2 f dvdx +~ / |E|2 dx = const.

Thus

For the plasma sign, v = +1, we get automatic bounds on both quantities.
Now we make the claim that even if the energy is indefinite (i.e., if y = —1)
we still have

(4.16) /f lv|2f dvdzx < const.
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This observation is due to Horst [25] who also showed that in this case (y = ~1)
the solution can blow up in finite time on R?, n > 4. See the end of this
chapter. In order to establish the claim, note that

|E(t,z)| < cr=2xp(t,z) (r=|z]).

Recall that
lr=** ¢llp < clldlly on R

where

1 1 A

—=-+ o

p q n

We take A =2, n =3, p=2. Then q = 6/5 and hence

0<

7 5

(4.17) IE@2 < cllr=2 % p(t, )z < cllp®lle/s < cllp®OIF o575
Therefore ||[E(t)||2 < c||p(t)[|;§;2 because {[p(t)||1 = const. Now write

pz/deS/ fdv+R'2/ |v|2f dv
lv]<R lv|>R

4
< G I olloo® + R22(t, 2)

where

e(t,z) = /]v|2fdv.

We choose R via R3 = R-2.%, or R =€/%. Then

(4.18) p<cR3=c (/ |2 S d’u) e

Thus

(4.19) /p5/3 dr < c// [2f dv dz

and hence

az20) ek <c( [ Ivadvdx) o (/ Ifflzfdz’dw>l/4

so that

(4.21) /lEPd:c <ec (// [vadvdat)l/2.

Therefore even if v = —1, [[|v|2fdvdz < const.
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4.2.4. Bounds on the Field. A standard estimate on the gradient of a
Newtonian potential (with Au = p, F = V,u) is

(4.22) IE®) oo < ello(E o())375.
For the proof, write

p(t,y) dy
lr ~ yi?

d d 25
Y Y

< ()]l / W el / _ W

( “ ly—zl<R Iy - £L'|2 ” 83 ly—x|>R I.’L‘ - y}z'%

00 2/5
< cllp®)lloo - R + cllp(t)lls/3 ( /}{ r2—5dr>
= cllp(t)llo R + cllp(t)lls/aR=4/5.

an|E(t,7)| <

Set |lp(t)]loc R = llp(t)lls/3R~%/>. Then

|E(t,2)] < cR - [lp(t)]loo < cllp(]3° - lip(t) 1135

as desired.

4.2.5. Estimates on the Derivatives of the Field. Let 0 < p € L1 be
Lipschitz. Let Lip p be the Lipschitz constant for p. Then for 0 < d < R,
(4.23)
oOF .
l——(t,z) <c(l+1In(R/d)) sup p(t,y) + cdLip p(t,-) + cR=3||p(t)}1.
Oz, ly—z|<R

Proof. ([5]) Classical differentiability of potentials implies

¢ _ 2
SO (1) = Lot + i/ (p(tv) = olt ) | 2Tl 1 gy
3 A7 Jly—zi<a T T

6.’1‘k
1 1 3y —xk)? 1
+ (Z—/ ot y) + Z—/ P(tyy)) (—(—k—g—ﬁl- - -3) dy
T Ja<iy-zI<R T Jjy-z|>R " "

where r = |y—z|. For the second term (involving the integral of p(t, y)—p(t, x))
we have the bound

d
const. (Lip p(t,+)) / —32} < cd- Lipp(t,-).
ly—zj<d T

The third term (involving the integral of p(t,y) over d < |y — z| € R) is less
than

dy R ar R
const. lo(®)ls | W = clo®llo [T =l IOl
d<ly—z|<R d T
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and the fourth term (involving the integral of p(t,y) over |y — z| > R) is

dominated by
const. R=3||p(t)}}1-

Similarly, for i # &,

OFE*k
or;

3(yi — —Tk)d
e = [ () - ol ) PTG TIW

3 i~ . —
+ / p(t,y) (v x’)éyk Z) dy
ly—z[>d r

(4.24) —

which satisfies the same estimate.
COROLLARY: Suppose also that |p(t)||cc < er < 00 ont <T. Define

ln*s:{s 0<s<1
l1+Ins s> 1.

Then for a solution to (VP)

(4.25) sup |DE(t,z)| < er (1 + In"(sup IDxp{)) .

Proof. Simply replace Lip, by sup, |Dzpl, and take d = m.

Suppose that the v—support of f is bounded for bounded times. Then there
exists Q(t) such that

(4.26) p= /fdv = /l <o fdv < cQt)?

and
|Dzp| < cQ(t)?sup | fz(t, z,v)|.

Therefore from (4.16), (4.19) and (4.22) we have
(4.27) [Ello < cllols” < er@(t)4/3
and |E.| grows at most like In(ct sup,, ,, | fz|) for | f-]| large (¢t <T).

4.2.6. Estimates on the Derivatives of the Density. For 0 <t < T, T
arbitrary, let f satisfy

(4.28) Of+v-Vof +7E-Vof =0;  flt=0 = fo.
Let D be any x derivative. Then

(4.29) (Df) +v - Va(Df) +YE - Vo(Df) = —yDE - Vo f
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so that
(4.30)

d
(—l;Df(s,X(s,t,a:,v),V(s,t,:r,v)) = —yDE -V, f(s, X (s,t,z,v),V(s,t,z,v)).

Hence

(4.31) |Df(t,z,v)| <|Df(0, X(0,t,2,v),V(0,t,z,v))|

t
+/ |DE -V, f(s, X(s,t,z,v),V(s,t, x,v))|ds.
0
Define

[f($)h = sup|d: f(s, . v)] + sup |8y f(s, 2, v)].
|E(s)lr = sup |8z E(s, z)|

and assume that fu has bounded partial derivatives. Then

(4.32) Dt )| <ot [ BRI ds

We see that 9, f satisfies an inequality of similar type because
H(Ouf)+v - Vi(Ouf) +YE - V(0o f) = —Fv - Vo f.

It follows that (with a different constant co)

(4.33) FOh <ot [ L+ IBEDIF s
However, from Section 4.2.5 we know that
|[E(s)h <er(1+In"|f(s)}1) on s<T.

Therefore for t < T,

t

(4.34) o <er [+ [0+ @]
G

It now follows by an application of the Gronwall inequality that

[f(H)hh <er on t<T,

as well as
[E@t)y <cer on t<T.
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4.3. Sketch of the Existence Proof
Let
ft+v - Vof +9E-Vof =0, f(O,.'I?,U)zfo(IL‘,’U)-

Given fy > 0, compute py = ffo dv; then 1y via Aug = pp, then Ep = Vuyg.
Then we get f1 by solving (8 +v- V) fi+ Fo Vo f1 =0, f1(0,z,v) = fo(z,v),
etc.

In general: given f,, define

(4.35) pn - /fn d’U, Au'n_ - pn, En = VUn.
Then we define f,,41 to be the solution of

a

afn—}-l +v- va:fn+l + ')’En . van+1 =0

fn+1(0’$’ U) = f()(.’L','U).

The characteristics are

Xn+1 = Vn+1
Vn+1 =vEn

so the characteristics change with n, but we still have the essential feature that
0 < fa(t,z,v) < const. because f, is constant on its characteristics. When
one applies the above estimates to these iterates, and addresses the relevant
regularity issues, the local existence theorem follows. This iteration is studied
in full detail for the more general case of the Vlasov -Maxwell system in the
next chapter.

4.4. The Good, the Bad and the Ugly

From now on we can assume that v = 1. This is because we have already
shown that the kinetic energy is bounded in (4.16) even when v = —1, and
this is the only ingredient needed in the argument which follows.

Let (X (t),U(t)) be any fixed characteristic:

d - ~ood s -
EX =U, EU-E(t,X)
for which

F&X (), U1) #o0.

For any 0 < A <'t, we have

(4.36) /ti |E(s, X (s))| ds < c/ / I Slj’w))(dw Tiyds

./ / / IXJ;it txa,'vv;hidx ((is)[ 2
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by (4.6).
Let 0 < P < Q(t), R> 0, A = £(c1Q%/3(t))~1, where the bound for the
E field is | E(t)]loo < 1Q%/3(t) from (4.27).

We partition the integral in (4.36) as /// + /// + /// where
G B U

G = good set = {(s,z,v): t = A <s<tand (Jv] < Por |v-U(t) < P)};
B =bad set = {(s,z,v):t ~ A <s<tand |v| > P and |v—U(t)] > P and
(X (s,t,x,v) — X(s)} < RJv|=3 or |X(s,t,z,v) — X(s)] < Rlv — U(t)]"};
U = ugly set = {(s,z,v):t — A <s<tand|v|] > P and
|v—U(t)] > P and | X(s,t,z,v) — X(s)| > Rlv|-3 and
|X (s, t,z,v) — X(s)| > Rlv — U(t)|-3}.

For the characteristics recall that when we set

= X(s,t,z,v)
w=V(s,t z,v)

we can invert via

= X(t s,y w)
v = V(t,s,y,w).
In particular,
(4.37) w=V(s,t,X(t,s,y,w), V(L s,y,w)).

Firstly we make a number of preliminary observations.
1L (A) |V(s,t,z,v) —o| = | [T Edrl.
Thus for s € [t — A, t], |V(s,t,z,v) —v| <A 1Q¥3(t) < P/4.
BYWU(s)-U@®)I<iP for selt—At.
2. (A)for vl < P, [V(s,t,z,v)| S [v| + P < 2P (by 1(A))
(B) for |v] > P, Lo < o] =Bl < |- & < |V(s,t,2,0)] < o]+ 5§ < 20].
3. (A)if jv = U(t)] < P then
I‘/(S,t,f{?,l]) - U’(S)l .
<l =U®|+|0@) = U(s)| + V(s t,z,v) — v
<P+ 4+ E<2p
(B) if jv — U(t)] > P then

S = 00| = o~ U(0)] ~ 5l - 0(0)
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<w—mm~£—§

< v —=U@)] = V(s t,z,v) —v| - [U(s) — U(t)]
< |V(s,t,3,v) - U(s)]| A

< V(s t,x,v) —v| +|U(s) = U)| + |v = U(2)]
S£+§+M—MM

< 2l = U(t)).

We now estimate the integral over the good set. Let

on [ et [ tpmpmae

Let

1 (s,z,v) €G

xa(s,2,0) = {(} else

Then
I / // xc(t, z,v)f(t,x v)dvd:rds
G =
X (s,t,2,0) — X(s)]2

/ f/ ly (S;’(:’lz -xa(s, X(t, s,y,w), V(t,s,y,w)) dwdyds.

Now if xg(---) # 0, then V (¢, s,y, w) must satisfy either
Vit,s,y,w)| <P or |V(t,syw)—Ut) <P

Therefore by Preliminary 2(A), 3(A) we have either

(4.38) lw| < 2P or |w—U(s)| < 2P.

Set

B(s,y) = / fls. v w)xa(s, X (85,9, w), V{t, s, g, w)) du.

Then [|p(s){lcc < cP3 by (4.38). Moreover, 0 < p < p, and hence [|plfs/3 <

llplls/3 < e. Therefore using (4.22) we get

ﬁ(ss y) ~ 4/9 5/9
——=———dy < cl|p(s)]l5 Ip(s)ll5)5 < cPY/3.
/ly—X(S)P 5/3 =

Thus we have

(4.39) Ig < cA - PA/3,
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Now we turn to the estimation of the integral over the bad set. Let
y = X(s,t,z,v), w=V(st,z,v). By Preliminary 2(B), 3(B),

1 1
§P < —2~|v| < fw| < 2|v},

1 1 - . -
iP < 5"“ —U@)| <|w—-U(s)| < 2v—-U(t)
and either
ly — X(s)| < Rlv|~3 < 8R|w|~3
or
ly — X(s)] < Rlv — U(t)]~® < 8RJw — U(s)|~3
Therefore

/// /]/p{ sttmmvz)dvdxd:w ///|f(s y’w) wdy ds

[ / / T8 G gy ds
LP<jwl<Q(t) Jjy—-X(s)|<8Rjw|-3 |y — X(s))2
(4.40)  + / / / £(5,y,w)dw dyds
t—A J I P<|w-U(s)|<2Q(t) J|y— X (s)|<8Rjw~T(s)}~3 |y-X(s)‘2
t
< Cf / 47 - 8R|w|-3 dwds
t—A JEP<|w|<Q(t)

t
+ c/ / 4 - 8R|w — U(s)|-3 dw ds
t—A J L P<iw-U(s){<2Q(t)

cona i (1202)

This is the bound for the bad set.

Now consider estimation of the integral over the ugly set. The time inte-
gral smoothing, a crucial issue, will be used here. Let Z(s) = X(s,t,z,v) —
X (s); pick sp € [t — A, t] such that |Z(so)| is minimal. Now

(441) 12 =V (s, t,2,0) = U(s)] > 3l — V()]
by Preliminary 3(B). Set

(4.42) Z(s) = Z(s0) + Z(s0)(s — s0).

Now we claim that

(s —s0)Z(s0) - Z(s0) >0 on t—-A<s<t.
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Using
L\ z65)2 = 2(5) - Z(s)
2ds o

we see that there are three cases:

(i) if so =t — A, then s — sg > 0 and Z(sq) - Z(s0) = ld1zis)2>0
because the minimum occurs at the left end point.

(ii) if sp =t, s —so <0 and Z(so0) - Z(s0) < 0 for similar reasons.
(iil) if t — A < sg < t, then Z(sp) - Z(s0) = 0.

This establishes the claim. Thus

(4.43) |Z(s)}? 2 |2 (s0)1? + |Z(s0)(s — s0)|?
> ll’_‘_%(_tm(s — 50)2.

Now it follows from Taylor’s Theorem that

1Z(s) - Z(s)] < 2c1 Q¥/3(2)

so that
1Z(s) — Z(s)| < c1Q4/3(t)(s — s0)?
(4.44) < a@Q3(t)Als ~ sof
< P|
<5 s — so|
< Iv;ij(tlls — S0|.
Therefore
(1.45) 2)] 2 12()] - 120) - Z(s)]
SO 2 T
_e-U@)
=g kel

Now fix v and define

e r > (Rpl-2)?
oi(r) = {(Rlv|‘3)_2 else;

[ r > (Rlv — U(t)]3)
oa(r) = { (Rlv — [](t)|—3)~2 else.

Each is non-increasing.

129
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oi(x)

Fig. 4.1 The Upper Bounds o;(x)

Then for i =1, 2,

(446)  |Z(s)|"2xu(s,7,v) < 0:(|Z(5)[2) < o (h) - U(t)lléls - so|2> |

Hence

R 2
(4-47)'/t_A[Z(S)l_ZXU(S,J?,U)dSS/_ o5 ((lv—U(tiHS*sol) ) ds
= ((p-Owr)
2/0 i ((——4—) ) dr

o [T ain®)dny
_8/0 v—U@)|

il

Now

oo R|v|™3 oo
ws)  [Coman= [ Rz [ ey

= 2(Rlv|-3)-1.

Similarly we treat fom o2(n?) dn. Therefore

t ) 16jv — U(t)]-1(RJv|-3)"1, i=1
/t IZ(S)‘ 2XU(S»:U’U) ds < { 16:: _ U(t)'—l(Rlz — 0(t)|*3)‘1, 1= 2.

~A
Hence
/t 12 -x0 s,z vy ds < VIO (onin ag o - o0y
t—-A
< 16R-1of2.

It follows that

(4.49) /// < cR‘lf fi,z,v)|v|2dvdr < cR-1
U
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by the energy bound (4.16).

Now we collect the estimates (4.39), (4.40), (4.49) to get

(4.50) %/LA |B(s, X(s)|ds < c (P4/3 +Rln (%ft_)) + E;A—)

¢ (P4/3 + Rln (é%t—)> + R-1. P—1Q4/3(t)) .

We take P = Q¥/11(t); R = Q16/33(t) In~ /2 (f‘—%@) Then

A / E(s, X(s))|ds < C(Q(t)16/33 +Q(t)16/33 . 1nl/2 ( Qi%t()t
(4-51) + Q(t)4/3—-4/11-—16/33 ln1/2 (Q4/1(1t()t)

< cQ(t)19/33 In/2 Q(t).

4.5. The Bound on the Velocity Support

The bound on Q(t) is obtained as follows. From (4.3) and (4.51) we have

i
(452) OO <0 =81+ [ 1B X()lds
t—A
< Q(t — A) + cAQ/33(t) In' /2 Q(¢).
Here c is independent of the particular characteristic (X U ), so

(4.53) Q(t) < Q(t — A) + cAQ'/33(t) In'/? Q(t)

for

A = min {t, Q) le(t)}
= min {t, Zi—l—Q(t)’32/33} .

Since @ is non-decreasing, there exists T such that

t t<T)
(4.54) A= { £-Q(t)32/%8 ¢ > Ty,

131

Take tp in the interval of existence. Without loss of generality, to > T1. Let

1
t1 =to — ZC:Q(to)‘”/”,

(Q(t;)) 32733

titv1 = t; — ic
1

=1,2,...)
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as long as t; > T7. Then
(4_55) ti —tig1 = _I_.Q—-32/33(ti) > _l_Q—32/33(t0)

4c; B 7]

which is a uniform lower bound on the length of each subinterval. So there is
a first 7, say 1 = k, such that ¢, < T). Thus t; > 0 and therefore

Q(tﬁ)_32/33

(4.56) (to—ti)+(t1—t2)+ -+ (tey —tx) > k- 1o
which implies that
(4.57) Q(to)=32/33 . k < derto.
Now we have
k—1
(4.58)  Qto) = Q(tx) + > 1Q(t:) — Q(tis1)]
e
<Q(te) + ) A-QU/3(t) In' 2 Q(t:)
1=0
< O(T, SR —32/33(¢ 16/33 (¢ In /2 O(t,
< Q( 1)+C§4~EQ (to) - Q1/33(t:) In"/ " Q(t4)

< Q(T1) + ¢ kQ=32/33(tg) - Q16/33(t9) In'/* Q(to)
< Q(T1) + cto - Q*8/33(t9) In'/? Q(to).

Therefore Q(fp) is bounded, and the proof is complete.

We conclude this proof with some remarks on related techniques and prob-
lems. The proof just given is a modification of Schaeffer’s simplification [41]
of Pfaffelmoser’s original proof [34]. In the proof of Horst [28] the integral of
E along characteristics is partitioned in a rather similar fashion, but Horst
shows that the growth rate of Q(t) is essentially first-order in ¢, as mentioned
in the beginning of this chapter, and he allows more general data. A com-
pletely different and elegant argument is given by Lions and Perthame in [31].
They show that higher moments of f in v can be estimated. They employ a
representation for p which is obtained by integrating along the straight line
characteristics of the Vlasov equation (4.1).

The relativistic Vlasov-Poisson system has the form

ft+i}'v.rf+’yE'va:0

where F and p are given as before, v = +1 and

v

V142

=
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This is not a physically well-posed equation, since it lacks Lorentz invariance
(the proper coupling to the Maxwell equations restores the desired invariance).
Nevertheless, it seems that this should be mathematically simpler and nearly a
prerequisite for solving the Vlasov-Maxwell system globally in time. However,
none of the now known methods applies. Thus the global solvability for “large”
data remains open. In this case, the sign of the nonlinear term is important;
finite-time blowup can occur for “large” data if the force is “attractive”, as we
show below (cf. [21]).

4.6. Blow—up in the Gravitational Case

We conclude this chapter with a brief discussion of the gravitational problem
for the Vlasov—Poisson system. In this case the energy has an indefinite sign,
which allows the possibility of finite--time blow-up in higher dimension.

We begin with the argument of Horst ([25]) which shows that if we pose
the non-relativistic problem in a phase space R* x R™ with n > 4, then any
smooth solution can exist only on a finite interval of time.

The equation can be written as
(4.59) fi+v - Vof —E-Vuf =0 (x,veRr);

pltoa) = [ fav,
E(t,z) =Vou, Au=np,
f(O,a:, ‘U) = f{)(xv U)‘

The conserved energy in this case is

// [v|]2f dvdx — / |E|2 dx = const. = &.

We will assume that £ < 0, and that n > 4. Let f(t,z,v) be a nonnegative
smooth solution with data of compact support existing on [0,7") x R* x R»
with finite energy. Then we claim that T < oo.

For the proof we put r = |z| and compute

—//ﬂfdxdv—//ﬂ (vf)+ Vo - (ES)) dvdx
:2‘//(x-1))fdvdz

and hence

(4.60) df2//r2fd:vdv-—2//x v { Avf)+ Vo - (Ef)) dvdx

:2//}1)|2fda:dv—2//:B-Efdxdv.
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//x-Efdmdvz/pm-Edm

=/Zm,~8ju8§udz
k,J
= —/Zaku (6xj05u + x;0;0ku) dx
k.
- —/|E|2da) - %Z/mjajugk dx
ki

—/IEPdm—F%/WPdm
- (% - 1>/|E|2 dz.

Now

Thus from (4.60) we get

%g;i rzpd:z:=//|v|2fdvdz—/p:c-Ed:c
:f/[vl?fdvdw—(g—l)/lEPd:c
:80+(2—g)/|E|2dw
:80+<4;">/|E|2d:c

< &.

Integrating twice in time, we have
/TQp(t, zydr < /er((l, z)dx + t/r2pt(0, x)dz 4+ Ept?.

The right-hand side here is negative for sufficiently large t (because of the
assumption & < 0) while the left-hand side remains nonnegative. This leads
to an upper bound for 7', and establishes the result.

Lastly, consider the relativistic Vlasov-Poisson system with v = —1 in
three space dimensions:

fi+0-Vof ~E-V,f=0

where E = Vau, Au=p= [ fdv and

v

b=
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The conserved energy for this problem is

//\/1+|v|2fdvd:r—%/lEPd:r:const.EEl.

We will assume that £ < 0. Let f(¢, x,v) be a nonnegative spherically symmet-
ric smooth solution with data of compact support existing on [0,7) x R3 x R3
with finite energy. Then we again have the result that T < o0.

Using direct calculations very similar to those above, we obtain the dilation

identity
d fdvdzx
| [esma- [ [ R

and, with r = |z|,

(4.61) d%//rszdzdv:2//$-vfd:vdv——/r2E-jd$

where
7= /f)f dv.

Integrating the dilation identity once in time, we have

(4.62) //x-vf(tw,v)dzdvg//:c-vf(o,a:,v)dxdv+51t.

Now we use the radial nature of the solution. As is well known, the spherically
symmetric form of the solution to the Poisson equation Au = p is

I oo
u(t,r) = ——/ A2p(t, A) dA —/ Ap(t, A) dA
0 T

r
so that
(4.63) E(t,z) = ;f% /0 A2p(t, M) dA.
Set

M(t,r) = f / A2p(t, A) dA.
0

Then we have a uniform in time bound |M(¢,7)] < My < oo by the L! conser-
vation law. Thus

/rzE-jd:v

Hence from (4.61) we have

d
a/ 7‘2\/1+|’U|2fdl‘dv:2//$'del'd’v—/7'2E'jd1'
52(//x-vf(ﬂ,a:,v)dmdv-l—&t)+M02

(4.64)

SMQ/U[deMo/pdeMg.
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where we have used (4.62). Integrating this once in time, we get

/ r2\/1+|vl2f(t,a:,v)d:zdv_<_//r2\/1+|v|2f(0,:c,v)da:dv
+ (2//$-Uf(0,m,v)d:vdv+M§)t+81t2

= ¢1 + cot + £112.

Once again we find an upper bound for T using the hypothesis that &£ < 0,
and the proof is complete,

In the references we include a number of papers on related problems which
have not been discussed. In particular, there one will find results on stabil-
ity of certain solutions to the Vlasov-Poisson system, numerical algorithms
and treatments of the Viasov-Poisson-Fokker-Planck system {which models
collisions using diffusion in v-space).
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Chapter 5
THE VLASOV-MAXWELL SYSTEM

5.1. Collisionless Plasmas

The goal in this chapter is to derive a sufficient condition for the global exis-
tence of a smooth solution to the relativistic Vlasov-Maxwell System (cf. [31}).
As in the Vlasov-Poisson case, this condition reduces to the control of large
velocities.

A Plasma is a completely ionized gas. We assume as usual two species:
electrons, with charge —e, and positive ions, with charge Ze (Z € N). The
major assumptions are that the plasma is at high temperature, is of low density,
and that collisions are unimportant. “High temperature” means

e2
T>> ‘:'g€2N1/3
r

where T is the temperature, N is the total number of particles per unit volume,
and ¥ ~ N~1/3 is the mean distance between them. The Debye length a is

defined by
4r sum over all
-2 2
@ T za: Na(Zae) (types of ions) :

Then a is the distance at which the Coulomb field of a charge in the plasma is
screened. If we have only one type of ion, with Z = 1, then

1 4n T \Y?
- = 2 .
(5.1) 5= TN(Ze) , ora—(linez)
so the above condition is
e2N1/3 e2N1/3 72
5.2 1, ie, ————r0 1, 1.
(5:2) T <L e 4nrNeZa? <« hoor 4ra? <

This can be interpreted as saying the mean distance between particles is small
with respect to the Debye length i.e., the ion cloud around a charge must
contain many particles,
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We can consider a plasma collisionless when the effective collision fre-
quency v (= the reciprocal of the mean free time of a particle) < w = frequency
of variation of E, B. Under these circumstances

—i > collision term.

ot

Another condition under which the collisionless approximation makes sense
is this: let

]
¢ = particle mean free path = ”

L = distance over which the field varies (= “field wavelength”).
Then if v < %—, the streaming term is dominant:
v- Vg f > collision term.

These conclusions are established in [20].

5.2. Control of Large Velocities

We consider the relativistic case. Assume that we have several species with
masses mq and charges e5, 1 < a < N. The relativistic velocity is

R v

- Vmai + [v|2/c?

where ¢ is the speed of light. Thus 94| < ¢ for each a.
The particle densities fo(t, z,v) satisfy

(5.3) affa'*‘ﬁa'v;vfa’;*ea(E”;‘vfxB)'VU‘fazoa

p=47r/Zeafa duv, j=4w/2ﬁaeafa dv,

GE=cVxB~—j V-E=p

&B=—-cVxE V-B=0.
Given are fo(0,z,v) = faol(z,v), E(0,z) = Eo(x), B(0,z) = By(x) satisfying
V~E0=p0, V~Bo=0, fp()dm:‘—'().

THEOREM 5.2.1 Let 0 < fao € C3; FEo,Bo € C? satisfy the above con-
straints. Assume there exists a continuous function 3(t) such that for all z, «,
falt,z,v) = 0 for |v| > B(t). Then there exists a unique C' solution for all t.

The proof in [9] is based on a representation for the fields which eliminates
the loss of derivatives suffered by solutions to the Maxwell System. We simplify
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the exposition by dropping the 7 factors and takingc=1, N =1, my = €q =
1. Then the system appears as

(5.4) Of+0-Vaf +(E+0xB)-V,f =0,

=/fdv, jz/i)fdv,

OE =V x B —j, V-E=p
0B=-VxE, V-B=0.

Traditionally one writes K = E + 0 x B for the force.
[ is constant on characteristics

T =10, v=K
whose solutions we write as
X(s,t,z,v), V(s,t,z,v) with X(t t,z,v) =z, V(¢ t,z,v)=v.

Hence

flit,z,v) = fo(X(0,¢t,z,v),V(0,¢t,z,v))

and so f remains nonnegative and bounded, provided 0 < fy < max fo < o0.

5.3. Representation of the Fields

THEOREM 5.3.1 Let B(t) exist as in the hypotheses of Theorem 5.2.1. Call
S=0+ Z‘Z:l kO, Then fori=1,2,3, the fields admit the representations

4rEi(t,z) = (E')o(t,z) + Ei.(t.z) + EL(t, z),
4w Bi(t,z) = (Bi)o(t, z) + BL(t,z) + Bi(t, z) where

e (it 8= o) dy
== [ [ e ) dep

wi + 0;) dy
Ei(t,2) / / (Sl yly.v) dvp
5 ly—x|<t 1+9- 'y—flfl
For the fields B there is a similar representation; we need only replace w; + 0;

in each expression above by (w X ©);. Here w = ﬁ

Proof. We put r = |y — z|. Note that 9, [f(t — |z —y|,y,v)] = Oy f —wiOf =
T:f, and that any T; is a tangential derivative along the surface of a backward

characteristic cone. The idea is to replace the usual operators d;,9; by T;, S.
We can invert these:

S—v-T
(55) d= v
Wi N
O =T+ 1+ w S—ov.T)

w; b
T;.
1+v w ( 149 w) g
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The summation convention is followed here. Now compute
(5.6) (8 — A)E! = —(8ip + 8¢j1) = -/(Bif + 0;01f) dv.

In the integrand we have

Y (wi -+ f)i)S N (wi + 'f)i)f)j _
(57) 6@ +'U¢a¢-— 1—}-'&‘&; + 633 1+{}‘w T]'

Therefore

47?Ei(t,$) = (Ez)g(t,l‘)
[ p—
data

wz+vz) B dy
]ym / s~ - ol o) o

N ICE (w?+vl)v])(1‘jf)(t-lx~yl~y,v) L

@y

The middle term has been called E”S The last term is by integration by parts

5.8 / / ft — |z —yl,y,v)] dy dv

(5.8) S 8y, |z~ yl,y,v)]
/ [“”C‘J"f (0,y, u)dSydv—i-/ / 9 % 4 dv.
ly—x|=t ly—zi<t ayJ

part of (EiYo

Now a lengthy but elementary calculation gives

(wi +&)([of* — 1)
r2(1+ 9 - w)?

R
(5.9) 3; [ 5 ] =
The calculation for the B field is similar since
(5.10) (32 — A)B! = (V x j)1 = / (203 f — Buiinf) dv.

This proves Theorem 5.3.1
Proof of Uniqueness. Let (f(1), E() B and (f(®, E@) | B®) be two classi-

cal solutions of (5.4) with the same Cauchy data. Define

f=fU - f@ E=FEYD_E® B=BY_B® KO =ED44jx B
K=KD-K® (i=12).
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Subtracting the equations, we have (5.6), (5.10), p= [ fdv, j = [#fdv and

(@ +0-Va)f = Sf = Ty - {(—KWD f0) 4 KD f0))
=V, {_Kf(l) - K(Z)f}

Using the Representation Theorem 5.3.1, we can write

anE(t,z) = Er(t,z) + Es(t,z) where

L e P e

(143 w)? ly —z|2’
ly—=|<t
(w+ D) 1) 1 kG dy
= — pd =2\ K® A\ d .
Bstt) = [[ v L kg v ke B
y—z|<t

Here in the Es term we have integrated by parts in v, using the fact that S f
is a pure v divergence. A similar representation holds for B. f has compact
support in v, so the expression 1 + 9 - w Is bounded away from 0. Moreover,
the fields are bounded by hypothesis. Adding these, estimating, and using the
support property, we get for t < T, with | - |¢ denoting the maximum norm,

IE®)o + [B(t)lo < CT/O (1f(r)ia + {{E@ (D)o + 1BA D)o }F (Mo
+ (B0 + IBOWIO (1)) dr.

Since E(2), B and f(U are bounded, we have on [0, T

(5.11) |E()lo +B(t)lo < Cr /(:(If('f)le +1E(T)lo + |B(7)]o) dT.
On the other hand, the equation for f above can be written as
Of +0-Vof + KU .V, f =K -V, f2),
Consider the characteristics of this equation, defined by the solutions of
=9, 0=KU, f=-K.V,f@,

Then f can be written as a line integral over such a characteristic curve of the
right-hand side —K - V, f(2). Hence

ft)o < C fo K - Vo fO)(r)]o dr.
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Since V, f(2) is bounded,

(612)  f@®b<Cr ]0 IK(r)lodr < Cr [0 (1E(T)}o + | B(r)]o) dr-

We add (5.11) and (5.12) and apply the Gronwall lemma to conclude that

E = B = f =0, as desired. This proves the uniqueness assertion in Theorem
5.2.1.

5.4. Representation of the Derivatives of the Fields

THEOREM 5.4.1 Let 3(t) exist as in the hypotheses of Theorem 5.2.1. Then
fori, k=123,

o= @b+ [ [aworas [ [dw stz
v wn? r<t r lwl=1

data

+ [ [ g+ [ clonses an

Here f,Sf,S2f without explicit arguments are evaluated at (t — |z — y|,y,v),
and r = |y — z|. The functions a, b, ¢, d are C except at 1 + 0 -w = 0 and
have algebraic singularities at such points. Moreover, fkwl:l a(w, ) dw = 0.
Hence the apparently singular integral above (containing the factor jy — z|~3)

is in fact convergent for suitably smooth f. There is a similar representation
for 8, Bt

dy

Proof. We put z = x — y in the field representation of Theorem 5.3.1 and then
apply 8/0xk. There results

; ; (wi + 0:)(1 = {9)?), dy
AmOLE* = (B E* ) — / W I i){f e O ft =z —ul,y,v) dvl""“:"';l-?‘
ly—zi<t
(5.13) f (“"*”‘ Tl a(S (- e~ ulwyv) do &
fy —
ly~zi<t
_ ; (Wi + )= [(,  _ wd; ‘ wy dy
= (B E)o — / (14 % w)? [(6Jk 1+ﬁ-w)T]+1+fJ~wS}fdvr2
ly—x|<t
_ (wi + 5:) o wkDj X
/ 149w [(5” 1+f)~w)T+1+ }(Sf)dv
ly—=xi<t

In the last term we integrate by parts in y, using the fact that T} is a perfect
y; derivative. Thus the last term is

1) [[ o [0 (g - 22 2 st~ to = slo) do dy
ly—zi<t
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wi + Vi )wk 9
- |z - dv d
- [ s - ) v iy

ly—z|<t

wk(w1+1}1
ot dvdS
/y z|= t/ 1+0- 5 S F(0,y,v) dvdSy

50 c(w,®) is the kernel multiplying S2f. The last data term is lumped into
(O EY)o. Part of b(w, ) is visible. The other part of b(w,?) comes from the
S-part of the second term. The most singular term is the T;—term in the first
expression; it is
(5.15)

Err = — lim // (s +2)(1 — [2) (m —“i’f—) Ty f(t - |z - yl,y,v) dv dy.

€0 r2(1+ 4. w)? I+ 7w
e<|ly—x|<t

The integral in Ep equals

// wj(wi + (1 - lvlz) (631« - -—w%]-;) F0,y.v) dvdSy

fy—x|=t
w](w,—i—vl (1 —192) Wi ‘
Lo _wKY . d
// 14 6-w)? Ok T+d-w ft —e€,y,v) dedSy
Iy x|—e
(w1+vz)(1~|v|) Wity )
bjk — 7= )| f(t = |z~ yl.y,v) dv dy.
// [ oo\ Tri.w) |l vbyy)dvay
e<|ly—x|<t

The first term depends on data only, so is part of (OxE?)o. The second term
converges to

(wi)(wi +2,)(1 — [8]2) Wil
(5',—_4‘— t, , d d
/|| 1/ (1+7-w)? k 140w flt,z,v)dwdv

= —/|wg:1/d(w7{))f(t’$,v) dw dv.

Since the v-integral is over jvf < B(¢), (140 w) 2 er >0o0n 0 <t < T
Also, f is pointwise bounded. Therefore the term involving d(w,?) is 0(1).
(We remark that the integrals which appear here over |w| = 1 can be explicitly
computed.) Now in the last term of Erq we have

(w: + &) wk ,
/ : - b — ———— | r?
1+ v2) Q1+ 7 w)? 1+9 w
oo Z9wi 4 O)fwe(l — [0?) + (1 + 0 W)+ (140 w)2éi

T+ +0-w)t

&

a(w, )

i

3

after a lengthy but elementary computation (cf. [9]).
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To show that [, _, a(w, ) dw = 0, write
a{w,0) =T+ IT+ 111
where
(5.17) I= ~3(w; + 03 Jwi

T+ )40 W)t
—-3’131;(&)1' -+ ’ﬁi)

= armparo-wp
_ bik
RV )

First we compute

~ dw PN _
(18 1= jxw;=1 ViThE o wp - TR /iws=1 (T+0-w)?

™ sin ¢ dop
= -1 [ DPT0 gy
27 (1 + |v|?) /0 (0 3l cos )2 ™
Thus
(5.19) [ IHT dw = 4nb;r.
furf=1
Similarly,
dw
5.20 v / = 4TV,
(5.20) ) =1 [V1+ o2+ v w]?
Now
N ~3wir{w; + 0:) _ _t?__ (wr + %) — Ok
CWIERE et O (VTP 4w
= 9|2 l(\/1 + 2t v w) 2+ h(V/1 4 U2 +v-w)3] .
81’5 avk 2
Hence
I a
5 =z — T (dnvy) = —4nby.
(5.21) j;w|=11 dw 28vi8vk(47r) Bvi( TUE) w6ik

It follows that

(5.22) f (I + ITT) dw = 0.
jwl=1
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Finally,

(5.23) = Swittu 3 0 AR )

Wi+ +v-wd 2 82

and thus

(5.24) / II dw =10
Jwl=1
Therefore
(5.25) f a{w,d) dw = 0.
jw]=1

The computation for B is similar (cf. [9]). The most singular term Brr also
has a kernel with zero average. This completes the proof.

5.5. Estimates on the Particle Density

We take f(0,z,v) = fo(z,v) € CJ, supp fo C {|z}| < k,|v| < k}. The
characteristic ordinary differential equations are

i =10, v =K, f=o.

Hence
flt,z,v) = fo(X(0,t,z,v), V(0,¢, z,v))

and so 0 < f < max fp provided 0 < f5 < max fo < oo.

Next, we claim that f(¢,z,v) = 0if |x] > ¢ + k. Indeed,

t
|1 X(0,t,z,v) — x| = / V(s,t,z,v)ds] <t
0

and hence |z| > k + ¢t implies

(5.26) 1X(0,t,2,v)] > Ja| - [X(0,¢,2,v) — ]
>k+t—1t=k.

Thus

(5.27) plt,z) = j{t,z) =0 for |z|>t+k.

Now we turn to estimates on derivatives of the particle density. Let Df =
2 for any j. Then

oz,

(5.28) (i + - Vot K - Vo) (Df) = —DK - V. f,
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so that

d
d—;Df(s,X(s,t,:c, v),V(s,t,z,v)) = —DK -V, f(s, X(s,t,z,v),V(s,t,z,v)).

Therefore
(6.29) |IDf(t,z,v)| < |Df(0,X(0,t,x,v),V(0,t,z,v))]
+ fgt IDK Vo f(s, X(s,t,z,v),V(s,t,x,v))|ds.
Now we define norms using
|E(®)lo = sup |E(t, z)I,

|Ello = sup |E(t)o;
0<t<T

3
|E(®)l = _sup |8x, E(t, )| + sup |8 E(t, )],
k=1 T @
WElls = sup |E()]s;
0<t<T
|f()lo = sglgf(t,w, v),
3
If®h = sup sup (lﬁtfl + > (102 fl + lakai)) :

k=1
Iflle = sup |f(t)]e (k=0,1)
0<t<T

with similar expressions for B.
From (5.29) it follows that

(5.30) IDF(B)lo < co+c [ (E@) + | BEOWIF ) dr.

A similar bound holds for D = 5—2—3— since

. _ dv o0
(5.31) [8t+v-Vm+K~Vv](Df)——avj Vaf 3o, X B -Vuf
and g% is bounded. Therefore
t
(5.32) If(t)h <eco+ CT/ L+ IEMh -+ IBOWIf () dr
4]

fort<T.

5.6. Bounds on the Field
Recall that, by Theorem 5.3.1, the field E can be represented as

E = (data term) + Er + Es.
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By hypothesis we have |v| < 8(t) < fr, say, on supp f for 0 <t < T. Then

wi + U5 <
A+ w)(A+o-w2| =T
since s
[0 w} < ! 1.

Hence with r = |y — 2|

(5.33)  |Er(t,z) <er ] Ft— |z — g}y, v) dv
y:x:[(t "U‘(@T
< CTﬁTt”fHO-

For Es weuse Sf = —K -V, f = ~V, - (Kf) and integrate by parts in v:

(534) Eg=— / (1”;“*‘ %) (Sf)d

_ wi + v dy
e “[w.wJ B voxmaly

The v--gradient factor is bounded by the support hypothesis (by cr, say).
Therefore

63 Bstolser [ [ (B@+ BOW O,
y—zi<t Jvl<ir r

so that

(5.36) (Bl < er + er / (IE(M)lo + [B(r)lo) dr.

A similar estimate holds for B. Therefore by the Gronwall inequality we obtain

(5.37) [E(®lo + [B@)lo <cr  on [0.T].

5.7. Bounds on the Gradient of the Field

- * = 5 SSI
THEOREM 5.7.1 Letlog™ s = { 14+Ins s>1.

Then

(5.38) IE@®) + |B(t)h <ecr {1 + log” (Stip If(f)h)}
T<E

fort <T.

Proof. Write

(5.39)  OE = (?::jl) + O Eipy — O Eig + 8 By, — O Elsg +0(1)
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where the various terms are given in Theorem 5.4.1.

The most singular term is

i
(540)  OxEhy = /

[ (A

/] a(w, D) f(1,x +w(t — 7),v) dvdwdr.

Now a{w, ¥) is bounded for |v| < Br. Thus for any d, 0 < d < ¢,

(5.41) /ﬁ Ty < erllfll /0 o E‘C‘i.% <erln (2)

and
(5.42)

tid(-.-) :[t;]/a(w,'ﬁ) [f(rz+w(t—=71),v)— f(r,z,v)]

because ﬁ , a{w, ©) dw = 0. Therefore

e |[ e | < eltvesio j [, avdeds <crai9.sio

Hence

(5.44) |8k Erp(t, @) < er {ln (d) +d|[Vzfllo }
Take d~1 = ||V, f]lo to get

(5.45) 0k Er| < er {1+ log"([|Vz fll0)} -

(Here we are assuming that d = {|V.fllg! < t; if not, a simple argument yields
(5.45) in this case as well.)
For the S f-term, we integrate by parts in v:

(5.46) / /b(w )Sf dv— /be(w 9V - (K F) de—
= /Kt/ Vab{w,8) - K fdv r—2dy.

By the bounds already known, this term is dominated by cr.
For the S2 f-term, we write

(547)  52f = -S8[Vy (Kf)] =~ (8 + 9 V), (fKY)
= “‘81;@ Kat + - vd?)(ng)} (avf{)j)axg ng)

— (S + 22U g, ket Ko, ).

AR 1!2
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Recall that c(w, 9) = — 50 Thus

(5.48) OxEig ;—‘/ /c(w,f))Szfdvgy
r<t r
- / / Vaelw, 0) - S(K f) v
/ /C(UJ U) € = 'UJ'UE) (fang +K€8rf)d’i)d_y
<t 3 3 r

1+ 2
C_,p(w #)
Now
(5.49) S(Kf) = KSf + fSK
= —KV,-(Kf)+ fSK.
Therefore
(5.50) OxElLg =/ FK -V [Voe: K] ffifiﬁ //v  fSK d”dy
dv dvd
+ f / éief s, K ery + f / 60K0,, f ";""
=+ 1T+ I+ 1V respectively.
Now
t

6.51) 1< er [UB@lo+ BOW (o dr < er:

J0

11 < ez [ FON(EM + [B(r)h) dr.

I11 satisfies the same bound as I1. For IV, we split d,, f again:

—~wiVy (K f) w;D dvdy
TV = ¢ J L Jvp
v /<t /CﬂzA [ 1+70-w + (6Jp 1 +v{)-w> Tpf} r

=V + IV,
In IV’, we integrate by parts in v:
i
652 UVi<er (B +BEOWAOldr < er.
0

Also, since |V w| = 0(r—1),

(8:53) |V < CT/O (E()lo + [B(7)lo + [E(7) 1 + [B(I)If (7)o d7-

151
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Combining these expressions, we get

4 1
(5.54) |65 E5s(t)o < CT/ {UE(THO +[B(1)lo)* + Z(!E(T)Ip + IB(f)ip)} [f(Mlodr.
0

p=0

Now by repeating the same estimates for the B field, we obtain

(5.55) |[K{t)h < er {1 + log* (Oztipstif(ﬂh) + ]; |K (1) dr} X

By an application of the Gronwall lemma, we deduce the Theorem.

Putting all of these estimates together, we can write
t
(656 1 <cter [ 1+ KOS dr
0
¢
< c+cT/ {1 + log” ( sup lf(s)h)} [ ()1 dr.
0 O0<s<r

Put a(t) = supp<s<; | f(8)]1; then

t
(5.57) a(t) < ¢+ er f [+ log" a(r)]a(r) dr = ¢(t).
0
Therefore
. ¢ d¢
(5.08) /; m < ct.

This implies that |f(¢)]; is bounded, and hence |K ()1 is also bounded. This
concludes the a priori estimations; when these techniques are applied to the
iterates, as will be done next, Theorem 5.2.1 results.

5.8. Proof of Existence

For simplicity let us take smooth initial data fo(z,v) in C3, Eo(z) and Bo(z) in
C3 and E1(z) and Bi(z) in C2. We recursively define the solutions f(" (¢, z,v),
EM)(t,z), B™(t,z) as follows. First, we will define fO(t,z,v) = fo(z,v),
E®)(t,z) = Eo(x), BO(t,x) = Bo(x). Given the (n—1)St iteration, we define
f( as the solution of

(5-59) 8tf(n) + i} N fo(") "*“ {E('It-—l) + f) X B(nﬁl)} * va(n) = G
F(0,z,v) = fo(z,v).

This is a linear equation for a single unknown (with C? coefficients which, as
we show below, are uniformly bounded in C! on 0 < ¢t < T') of the form

(5.60) hf+alt,z,v)- V(md,)f =0
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with initial condition fo where a and fo are C? functions. Thus (") is a C2
function provided E(m~1) and B("-1) are C2. Now f(") is constant along the
characteristics of (5.59), the trajectories of the system

(5.61) F=0, ©=E®n-14px Br-1),

Therefore f(*) has compact support in v, so that
(5.62) pln) = /f(")dzf and () = fﬁf(")dv

are well-defined as C? functions. Then, given f(™) and hence p(") and j(™, we
define E() and B(™) as the solutions of the system

(5.63) (07 — A)E(D) = —¥,p(m) ~ §yj(m)
(07 — A)B) =V, x j()

with initial data Eo(z), Ei(z), Bo(z), Bi(z).
LeEMMA 5.8.1 If f(") is a C? solution of (5.59), and E®), B(®) qre the
solutions of (5.63) then E™) and B(™) are also C? functions.

Proof. Since the right-hand sides of (5.63) are C?, the solutions are C*. To
show they are C? we proceed by induction on n. The representation Theorem
5.3.1 can be employed to give

ArEM(t,z) = Eolt,z) + E{(t, 2) + ES(t, x)

where Eg(t, z) is the solution of the homogeneous wave equation with the same
Cauchy data,

() _ W+ o)A =191 coves 1 dy
e =- [f SEREE e - - slpma 2
ly—z|<t
and
<{1 + d
E(S)(t,a:):—‘[i 1(‘1 %) (SFY (¢t -y - 2, y,v)dv{yjjw%.
y-—zi<

Now Ey(t,x) is C2. In the second integral appears the expression
Sf) = —V, - {(EM-D 4§ x Br=-1)f(n)}

so that we can integrate by parts with respect to v. By the induction hypoth-
esis, £(n=1) and B(™~1) are C2. Therefore E™ is C?, and the same holds for
B(n)_ This proves Lemma 5.8.1.
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We claim that the estimates (5.32) and (5.36) are valid for f(»), E() and
B() uniformly in n. To prove this we simply repeat all the previous estimates
with superseripts {n) or (n — 1). Thus it is clear that

(5.64) F(r)o < ¢

and, as in {5.32),

(5.65) |f™ () <c+er /0 t(1+|E<"—‘>('r)|1+{B<“-‘>(r)h)lf(">(r)h dr.

The analogue of (5.36) is

(5.66) |EM(t)lo + |BUI(t)o < c+ Cfot(lE("‘”(T)to +|B=1(7)]o) dr,

for 0 < t < T with constants ¢ depending on T'. Iterating (5.66) we get
(5.67) [EM (8o + |B™()|o < c(1 + et + -+ + cntn/nl) < cect.

Thus the fields E(), B(") and the density f(®) are pointwise bounded uni-
formly in n. Now the Gronwall lemma applied to (5.65) gives

(5.68) |F™ ()l < erexp U[:C(IE("“‘)(TW + 1B(n-1)(7-)h)dr} -

The analogue of (5.55) is
WWWh+BWthw+Wb§GWVWﬁW)
[0.¢

(5.69) ter /Ot(lE("“)(’f)h + B (7)) dr.

Putting (5.68) into (5.69), we deduce

[EC) () + [B™M(Hh < er +er /Oi(lE(”*”(T)h +|BU=(7)1) dr

since log® s < max{1,1 + Ins}. This estimate is iterated as above to give a
uniform bound on [|EM||; + ||B®|;. From (5.68) follows a uniform bound
for || f(™||;, forall n and for 0 <t < T.

With these estimates, together with compactness, it is easy to pass to the
limit. But to get optimal results, it is more convenient to show directly that
the sequences are Cauchy sequences in the C'1 norm. We fix two indices m and
n. For 1 =10, 1 let

b (t) = [E(t) — EM(8)|; + |BU(t) — BM(1)];,
fe(t) = | fem(E) = f @)
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Exactly as in the derivation of (5.11) we have

(5.70) e <c [ (857770 + fgnie)) dr

Exactly as in (5.12) we have

(5.71) frn) <e /D t B () dr

using the bounds already known, ¢ depending on T and 0 < t < T. We
substitute (5.71) into (5.70) and interchange the order of integration to obtain

t
(5.72) byn(t) < c / B () dr
0

with a different constant ¢. Iteration of (5.72) yields

t
) < @ [ (= b e dr
0
<...

t
(t - T)k—l m—k,n—k
<ok | LZTL ek, d
<c /0 -1 by (r)dr

< acktk/k! form >k, n > k,
where

b (2) < [EC (@)|o + |EM (t)o + B (E)lo + BT (H)lo < a.

Therefore E(), B(™) and, from (5.71), f(" are Cauchy sequences in the C°
norm so that they converge uniformly.

We claim that the same is valid in the C! norm. Let @ denote any first
derivative of F and consider any component i. We split 0E(™) and 8E(™) as
in the process given in Theorem 5.7.1, and then subtract these expressions.
First, the T'T term is written as in (5.40) - (5.42) and estimated as

t
|(aE§T;Z - aE;";))(t)lO < cj |f)(7) = fOom(r)], dr.
0
The T'S and ST terms are written as in (5.46) and estimated by

c./ot (bg‘“l’"Al(T) + f(’)n"(T)) dr.

We break up the S5 term into several pieces as in (5.50). Following the same
procedures and using the known bounds in C!, we deduce

\ t
@B - 0BG @] <c [ (770 + o) e
0
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Thus
(5.73) bpm(t) < /0 (57272 0) + o)) .

Now we estimate f*"(t). For this purpose, recall the characteristic equa-
tions

(5-61) j;n = ’i}n, i)n = K(ﬂ”‘})(s’ xn)

where K(n=1) = E(n=1) 4§, x B(n=1) js evaluated at time s. Denote the solu-
tions of (5.61) which assume the initial values z,v when s = t by z,(s), vn(s),
respectively. Below we suppress the dependence of K(®) on s. From the first
equation in (5.61) we get

< |vn = Uml

| @ =)

since the real function p + p(1+p2)~1/2 is has its derivative bounded by unity.
The second equation in (5.61) gives

= [K®=(2n) = KO ()|

’%(Ua — Um)

<K= D(zn) = KO- (zpn)| + [KO- Y em) — K=Y (zm)]
<clan — zm| + KD (@m) — KD (zm)]|

since each K(") has uniformly bounded C! norm. Moreover, we also have
K= — Km=DY (g} < 6rm, say, where §,m — 0 as n,m — oo uniformly
on [0,T] by the known bounds. Thus

(5.74) lzn —zm| + Wvn —vm] < cr {6rz.m + C/Ot(!vn ~ Um| + |Tn — Tm]) ds} .

By Gronwall’s inequality, the sequences {xn(s)}, {vn(s)} converge uniformly
on 0 < s < T. The convergence is also uniform with respect to the parameters
t,z,v where 0 <t < T, rcR3, velR3

To estimate f""(t), we only discuss z—derivatives 8f for simplicity. Dif-
ferentiating (5.59), we have

(B + 9 Vo + K=D(z,) - ¥,)0f (™) = —9K (=1 . 7, f(m),

Integrating along characteristics, we can write

t

Bf (¢, x,v) = fo(zn(0), vn(0)) — / [OK ™= (an) - Vo fV (s, 20, vn)] ds.
]
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The same equation is written at stage m and the results are subtracted; this
gives us the estimate

[(2f) — afm)(t, x,v)| < |8fo(2n(0),vn(0)) ~ Bfo(zm(0), vm(0))] +
ft [OK =1z} - Vo fO (8, Tnyvn) ~ OK™m=1(z) - Vo fOV (8, Tin, vm )| ds.
0

By the hypothesis on fo, the first term tends to zero as n,m — 0o. Therefore
we can write

!(af(n) - af(m))(ts Z, U)I

t
< €nm +/ {'aK(n_l)(xm) : (vvf(n)(svwnsvn) - V@,f(")(s,a:m,vm)){
4]

+(OK =D (zm) = KM=V (zm)) - Vo [ (8, T, vm)] )

+ lc‘?K(m*l)(azm) . (va(")(s, l'myvm) - va(m)('s, Tm, 'Um))‘] ds
where £pm — 0 as m,n — oo, uniformly for 0 < s < 7,0 <t < T,z €
R3, v € R3. The first term in the last integral tends to zero uniformly on
[0,T] as a consequence of (5.74) and the known C! bounds. The second term
in the integrand is dominated by ¢b7* "™ '(s), and the last by cf"*(s). We

know that the v derivatives of the difference can be estimated in terms of the
z derivatives, as in (5.31). Therefore

t
(5.75) L) < Ehm + € /0 [ (o) + f(s)] ds

where £, — 0 uniformly on [0, T} as m,n — oo. The function

¢
Gun(t) = [ f"(s)ds
0
then satisfies
. 4
Grm(t) — cGam(t) < ehm + c/ b'ln"l"""l(s) ds
0

so that
t t 3
Gam(t) < Ehm/ ec(“s)ds—i-c/ e“(t‘-‘;)/ bt r) dr ds.
0 0 0
Using this in (5.75), we get
t

(5.76) Fmn() < el + e 'bm-l,n«l $)ds
1 1
0
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with a different constant ¢ (depending on T), and where %, — 0 uniformly
on [0,T] when n,m — oo. Substituting (5.76) into (5.73), we arrive at the
inequality

t
(5.77) bR (t) < nm + € / b7 (s) ds
: 0

again with a different constant ¢ (depending on T') and another expression énm
which tends to zero uniformly on [0, '] when n,m — oc. We can easily iterate
(5.77) to get

c2t2? Ci—-ltl—l
M < m l J— “ s e
b (t) < 6y (+ct+ 5+ +(1M1)!)

cl

t
+ (z~1)!/0 (t — )=t ) dr

Calling b an upper bound for the Cl-norm of the field, we thus have

it
b (t) < SpmeT + be I on0<t<T

l!
for m,n > l. Therefore E("}, B() and, from (5.76), f(™ are Cauchy sequences
in the C! norm.

Call the limits F, B and f, respectively. Then E™ — E, B — B and
f™ — f uniformly for t € [0, 7], z € R3, v € R3, together with all their first
derivatives. Passage to the limit in (5.59) vields the Vlasov equation. Passage
to the limit in (5.63) yields the second-order wave equations for E, B taken
in the sense of distributions with charge and current given by p= [ fdv, j =
[ofdv.

This proves Theorem 5.2.1 for smooth initial data. If fo, Ei and B are
merely ' functions and Ep and Bp are merely €2, we approximate them
by smoother {say C°) functions and pass to the limit as in the proof just
completed. The details are almost the same as what we have already done, but
a little simpler. This completes the proof of Theorem 5.2.1 for the simplified
case of a single species.

Of course no plasma is composed of a single species. The simplest way to
study a real problem is to let f denote the density of electrons, and to introduce
a known “background” ion density n(z), and to write the charge density as

p:—-/fdv—n(a:).

We require neutrelity which is the condition that the average value of p is zero,

i.e., that
/ fodzdv ::/ n(z)dz
R3xR3 R3
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(recall that the integral of f over R3 x R3 is invariant). This change introduces
some extra terms involving n into the earlier calculations, but each such term
is harmless and can be easily estimated.

More accurately, we should study several species with densities fo which
satisfy (5.3). Each velocity of propagation is different

v

m3 + |v|?2/c?

Vo =

and hence the operator § now depends on a:
S(_‘y :8t+?}&'vx.

Each f, remains pointwise bounded. In the representations for the fields and
their derivatives, the source terms are replaced by

px47r/Zeafa dv, jnél'fr/}:ﬁaeafadv.

(Recall that eq is the charge of particles of species o). Finally the differences
f& — f& are estimated for each « separately. These are the only modifications
necessary to complete the proof for several species.

In [11] the following generalization is established. The hypotheses of The-
orem 5.2.1 require compact support in v. The result remains valid under the
following condition: on every interval [0, T,

sup / V14 |2 falt,z,v) dv < .

a,z, t<T

Thus some particles may have unbounded momentum.

The classical (non-relativistic) Vlasov-Maxwell system may also be treated
by the same method. Notice that in the decomposition of derivatives leading to
the representation of the field (Theorem 5.3.1), it was essential that expressions
such as 147 -w could be bounded away from 0. In the nonrelativistic problem,
the corresponding expression is 1 + v - w. Thus singularities may appear on a
larger set of v's, and at finite momenta as well. Hence smooth global existence
in the non-relativistic case seems problematic, at least by this approach.
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Chapter 6
DILUTE COLLISIONLESS PLASMAS

6.1. The Small-data Theorem

In this chapter we consider small-data solutions to the Cauchy problem for the
Relativistic Vlasov-Maxwell system (cf. [38]). Assume that we have several
species with masses m, and charges eq, 1 < o < N. The relativistic velocity
is

. v
Vo =
S /mE [v]2/c?
where ¢ is the speed of light. The particle densities fo(t,z,v) and fields E, B
satisfy

(6-1) 8tfa+ﬁa'foa+ea<E+%(le)vvfa:()’
r= 47T/Z€af“ du, J=A4n /Zi}(reafa dv,

GE=cVxB—-j V-E=p
OB =—-cVxE V-B=0.

Given are fo(0,2,v) = fao(z,v), E(0,z) = Eo(z), B(0,z) = Bo(zx) satisfying
V-Ey=py, V-Bo=0, [podz =0.

In Chapter 5 a sufficient condition was given under which smooth global
solutions are known to exist. Namely, given any T > 0, a bound on the v-
support of the particle densities fao{¢,z,v) for all z, o, t < T is sufficient. We
show here that if the initial data of the fields and of the {f,} are small, such
a bound may be achieved. This material is essentially the coutent of [18].

THEOREM 6.1.1 For each k > 0, there exist constants eg > 0 and 8 > 0
with the following property. Let fao(z,v) (a = 1,2,...,N) be non-negative
C1 functions with supports in {|z| < k}, {|v| < k}. Let Eg(x), Bo(x) be C?

163
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functions with supports in {|z| < k} which satisfy the constraints
(6.2) V-E0=p0547r/ Zeafaodv, V. By =0, / podr = 0.
R3 R3

If the data satisfy

(6.3) D lfaolicr + 1 Ealicz + | Bolle2 < <o,

then there exists a unique solution of (6.1) for all x € R3 and all v € R3 and
all times t, 0 <t < oo, with fu, E, B € C! having initial data fao, Eg, By such
that

(6.4) falt,z,vY =0 for || =8 foralla,tandz.

Furthermore, E(t,x) = B(t,z) = 0 for |z} > ct + k. For all € > 0, there exists
€o > 0 such that if (6.3) holds, then

£

forallt > 0,2z € R3,

The key step in the proof is to show that the paths of the particles spread
out with time. Hence only a small set of momenta (of diameter O(1/t) in
momentum space as t — oo) could reach a given point (¢, z) from the support
of the initial data. Then p(t, x), which is an integral over a set of momenta of
volume O(t—3), is itself of that order. Since the particle paths are given by the
equations

(6.6) T =10q, U=eéq(E+c 104 x B),

the particles would move in approximately straight lines if £ and B were small.
Thus we must also prove that the electromagnetic field decays as t — oo,

In the case of the Vlasov-Poisson system there is no explicit time depen-
dence in the field equation (B = 0, Au = p, E = Vu) so that Bardos and
Degond [1] were able to iterate in a space where E decays in L> at the rate
O(t=2) and VE at the rate O(t~5/2). For (6.1), the field satisfies inhomoge-
neous wave equations like

(6.7) (82 = AVE = —Vap — 8j.

So the best possible L rate of decay for the field (with general functions p, j)
is O(t—1), which is far too slow for the methods of {1] to succeed. Horst {23],
on the other hand, imposed conditions as t — oo designed to allow more rapid
decay of the field. For the present problem with arbitrary initial conditions
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and a magnetic field, we introduce a weighted L>° norm for the field, as was
pioneered by John {25]. We use the weight

(ct + |x| + 2k)(ct — |z| + 2k).

By causality we know that |z| < ct + & on the support of the field, so that the
second factor simply introduces an extra decay factor of t—! inside the light
cone. In order to exploit this extra factor when solving (6.1), one must show
that |z| stays well inside the cone. Since & = 9, this is true if the momenta v
remain bounded. This means that the Vlasov and Maxwell characteristics are
well separated; that is, the system (6.1) is effectively strictly hyperbolic. Thus
we have come full circle to a condition on the behavior of the momenta. To
carry out the process we also need to estimate the spatial derivatives of the
field, for which a similar weight function is used.

6.2. Outline of the proof

The main structure of the proof, as exposed in the last chapter, follows {15].
In particular, uniqueness was established, and for existence the following con-
struction was utilized. For given functions E(t,z) and B0 (t,x), we define
EM)(t,z), BM)(t,x) and fé")(t, x,v) inductively as follows. Given the (n—1)st
iteration, we define fé") as the solution of the linear equation

(6.8)  fL 40 Ve fS + ea (EO-1 45, x BO=D) . U, £ =0

00, 2,v) = faolz,v).

For simplicity we have set the speed of light equal to unity (¢ = 1). Then we
define

(69) p(") = 47TZGQ /fc(x") d’U, J(”) = 47r26a/1"]afc(!") dv.

Finally we define E(?), B(") as the solution of Maxwell’s equations

BEM =V x B — jn)  V.E®) = pn),
OB™ = —V x E® V. BM =0
with data E("(0,z) = Eo(x), B"(0,z) = By(x).

A consequence of Theorem 5.2.1 from the last chapter is that if there exists
8 > 0, independent of ¢, z, & and n, such that

(6.10) én)(t,a:, v)=0 for [v]>p,
then (f{™, E("), B(") converge to a C! solution (fa, E, B) of (6.1). The rest

of this chapter is devoted to proving (6.10) under the “smallness condition”
(6.3).
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We abbreviate the field as K(t, ) = the pair (E(t,z), B(t,z)). Define the

norms

(6.11) Ko = S:P(t + |x| + 2k)(t — |z| + 2K){|E(t, z)| + | B(t, )|},

(t + |z| + 2k)(t — |x] + 2k)2
In(t + |z} + 2k)

(612) (K] = sup (IV2E(t,2)] +(V2B(t,2)]}

and ||K|| = ||Kllo + || K]j1. Let € > 0 and let

K={KIK is C! K=0 for |z|>t+k, |[K||<e}.
Given K € K, we define the characteristics as the solutions X = X,(s,t,z,v),
V = Va(s,t,2,v) of the ordinary differential system (6.6), that is,

(6.13) %)SS =V =V(mi +|V[2)-1/2,

QK
ds

with the “initial” conditions Xa(f,t,z,v) =z and V,(f,t,2,v) = v.
Next we define

(6.14) = €a (E(s, X) 4V x B(s,X)) :

(6.15) fa(t,x,v) = foo(Xa(0,¢, z,v), Vo(0,t, z,v)).
Thus f,(t, z,v) is the solution of the Vlasov equation,
(6.16) Otfa+ 0o Vefa+eaE+0a x B)-Vyfa =0,

with the initial condition fo(0,z,v) = fao(x,v). We define p and j as in (6.9)
and define K* = (E*, B*) as the solution of Maxwell’s equations

OE*=V xB*—3j V- E* =p,
OtB* = -V x E* V.-B*=40

with the initial conditions E*(0,z) = Eg(z), B*(0,z) = Bo(x).

Thus the iteration scheme may be summarized as K(?) = (K(»~1))* We
begin the scheme by defining K(© = 0 (that is, E©O(t,z) = BO(¢,z) = 0).
We shall prove the following two theorems.

THEOREM 6.2.1 If K € K and ¢ is small enough, then there exists 3 > 0
depending only on k,e and o such that fo(t,z,v) = 0 for |v| > B and for all
a,z,t.

THEOREM 6.2.2 If K € K and ¢ is small enough, then K* € K.



DILUTE COLLISIONLESS PLASMAS 167

Proof of Theorem 6.1.1. We define the sequences f{", K(®) as above. Since
K© ¢ K, Theorem 6.2.2 states that K(®) € K for all n. By Theorem 6.2.1,
) = 0 for |u| > B. By the work from Chapter 5 ([15)), 75 K™ and their
first derivatives converge pointwise to f and K. Therefore K € K. Hence (6.5)
is valid, as well as

eln(2 +t)
(14 t)(t — |z| + 2k)?

IV E(t, z)| + V2 B(t, z)| <

for all t > 0,z € R3. As was mentioned earlier, (f, K) is a solution of (6.1).

6.3. Characteristics

The characteristics are curves defined by the solutions to (6.13) and (6.14).
They exist as C! functions of s,t,z,v for some time 0 <t < T*,0< s < T*
because £ and B are (! functions. For as long as the characteristics exist, we
define

P(t):sup{[Va(s,O,m,v)I:]$|§k, v <k, 0<s<t, 1§a§N},

that is, the largest momentum up to time t emanating from the support of
fao. Then P(t) is a continuous function of ¢ for 0 <t < T*.

Before estimating P(f) we motivate its definition. In this brief section we
will drop the dependence on the species through the parameter «. By the
above definitions, we have

(6.17) X(t,0,X(0,t,z,v),V(0,t,z,v)) =
V(t,0,X(0,t,x,v),V(0,¢t,z,v)) =

Set y = X(0,t,z,v), w=V(0,t,x,v). Then these equations give us
= X(t,0,y,w), v=V(0,y,w).
Similarly, by uniqueness, one has

(6.18) X(s,0,X(0,t,z,v),V(0,t,z,v)) = X(s,t,z,v)
V(s,0,X(0,t,x,v),V(0,¢t,z,v)) = V(s,t,z,v).

Since f is constant on characteristics, we have
flt,z,v) = fo(X(0,t,z,v), V(0,t,x,v))
so that the support of f can be calculated via

{(x,v) e R3 x R3: f(t,x,v) # 0}
= {(z,v) e R3 x R3: fu(X(0,¢,z,v),V(0,¢,x,v)) # 0}

- {(X(t,O,X((), tz,0), V(0,t,2,v)), V(£ 0, X(0,t,z,v), V(0,1 v))) :

fo(X(0,t,2,v),V(0,t,z,v)) # ()}.
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This explains the extent of the v—support of f as well as the definition of P(t).
LEMMA 6.3.1 If0 < s <t and fo(t,z,v) #0, then

s = | Xal(s,t,2,v)| + 2k 2 (k + 8)(2 + 2P2(1)) .

Proof. For 0 < s <t assume that

falt,z,v) = fao(Xa(0,t,z,v), Val(0,t,z,v)) #0

and let
y1 = Xal(0,t,z,v), wi=Va(0,t, z,v).

Then jy1| = | Xa(0,t,z,v)| < k and |w1| = |Va(0,t,z,v)| < k. We have from
the second part of (6.18)

(6.19) IVa(s, t, z,v)| < P(t).

Hence (v} = |Va(t,0,y1,w1)| < P(t) and
[ Xa(s, t,z,v)] <|Xal(0,t,z,v)) +/ \WValr t,z,0)|dr <k + sP(t),
0

where, assuming m, = e, = 1 for simplicity,
P(t) = P(t)(1 + P2(t))~/2 < 1.
But

1— P(t) = (1 + P2(t))"V/2{(1 + P2(t))V/2 + P}~ > 2‘(?1}15(?)")'

So
[Xa(s. t,z,v)| < k+s—s{2(1+ P2(t))}?

which implies Lemma 6.3.1.

LEMMA 6.3.2 If K € K and if ¢ is sufficiently small, say € < €1, then the
characteristics Xq(8), Va(s) exist for all s (T* is infinite) and P(t) is bounded,
say P(t) < 3. Here ey and 3 depend only on k. Therefore, if fo(t,z,v) # 0
for some (o, t,z), then |v| < 3.

Proof. We have for t > 0, writing X(s) = Xa(s,t,z,v) and V(s) =
Va(st«t»'r7 U)1

[VQ(O,t,m,v)—vlf_/O |B(s, X () + P(s) x Bls, X(s))| ds
< 1Ko ] (5 + 1X(s)] + 2k) (s — | X(s)| + 2K)~1 ds

<l [ (54 K)2(2 + 2P2(1)) ds
v}
< %101+ P2 Ko
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by Lemma 6.3.1, provided |X,(0,t,z,v)] < k and |V,(0,t,z,v)] < k. Let
y = Xal0,t,z,v) and w = Vo(0,t,z,v), so that z = X,(¢,0,y,w) and v =
Va(t,0,y,w). Then

,w - Va(t70,y,w)| < 2]‘7—1(1 + Pz(t))”K”O
for |lw| < k and |y| < k. Thus
P(t) <k+2k=1(1 + P2(£))|| K|lo-

If ||Kljo is sufficiently small (depending on k), this implies that P(t) is a
bounded function of t. (See the argument in Chapter 2 surrounding Fig. 2.1).

Proof of Theorem 6.2.1. By Lemma 6.3.2, the characteristics exist for all
time. If fa(t,z,v) # 0 for some (z,t,a,v), then, in view of (6.15), |y| =
| Xa(0,t,z,v)] < k and |w| = |Va(0,t,x,v)} < k. By the definition of P(t),

] = [Va(t,0,y,w)| < P(t) < 8.

LEMMA 6.3.3 If € is sufficiently small, there is a constant ¢ > 0 such that
| Xa(0,t,2,v) ~ Xo(0,t, 2, w)] > ctlv — w|
for all t,z,v and w such that fo(t,z,v) # 0 and fo(t,z,w) # 0.

Proof. For simplicity, since « is fixed, we drop the subscript a. Following
Horst [23], we rewrite the characteristic equation for dv/dt in terms of 9, as
follows:

(6.20) % =m=1(1— [p|2)1/2{E+ b x B — (i - B0} = J(t,z,9).

Since (1—[0]2)1/2 = m(m2+|v|2)~1/2 < 1, the derivatives of J can be estimated
as

(Vad(t,z,0)| < (1 - |9|2)1/2|V K|
<Kt + 7+ 2k)-1In(t + 7 + 2k)(t — 7 + 2k)~2,

where r = |z|, and

[VaJ(t, 2, )| < (1 — [0]2)72|K| < e(1 + |v[2)V/2| K|
<e(1+ )V 2|K|lo(t + 7 + 2k)~1(¢t — 7 + 2k)- L.
For the characteristic passing through the point (¢, z,v), where f(t,z,v) # 0,

we abbreviate X (s) = X (s,¢,z,v) and V(s) = V(s,t,x,v). Then we substitute
s for t, X (s) for z and V(s) for v to obtain

(6.21)  |(VoJ)(s, X(s),V(s))| € (1 + 82)2||K|(k + s)~3 In(k + 5) = g(s),
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and
(6.22) (Vod)(s, X(5), V(s)| < e(1+ B2¥/2| K ||(k + $)=2 = h(s)
by Lemma 6.3.1.
Now let t,z,v and w be fixed so that f(¢,z,v) # 0 and f(t,z,w) # 0. For

brevity we denote X1(s) = X(s,t,z,v) and Xa(s) = X(s,t,z,w). By (6.13)
and (6.20) we have, for 0 < £ < ¢,

t
Xl(f)—x2(£)+(t"€)(i’“ﬁ’)=/ [~Vi(r) + 6+ Va(r) — @l dr
14
t pt [ =
=// [%_B_Vg] dsdr
¢ Jr 8s s
t t N -
=/ / [J(s, Xa(s), Va(s)) — J(s, Xa(s), Va(s))] dsdr.
£ T

Hence by (6.21) and (6.22), we have
[X1(§) — X2(&) + (£ = £)(0 — w)] < D(9),

where
D) = /: |~Ta(r) + 0+ Va(r) — | dr
< [ [ {onxa0 - a6+ AT e) - Pao} s
< [ [ {o0 [ 19:0)-aorias s hie) - oot} asar
< [ o) 1D06) + = 9o il ds + h()D()
+ /: h(s) ds|o — 1D|] dr.

In the first part of this expression, we switch the order of integration, obtaining
the factor (s — £) < s. In terms of

[ ds,
I /0 [sg(s) + h{s)]ds
we therefore find the estimate
DE) < fg [sg(s) + h()|D(s) ds + (¢ — £)[6 — WIL.

After changing variables £ — (t — £), we apply Gronwall’s inequality to obtain

D) < (¢~ &)l — il exp | [ tsots) + o) ds| < (¢~ 90~ ol exp.
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We choose ¢ so small that Texp! < 1/2, recalling that ||K|| < e. Choosing
£ = 0, we therefore have

[X1(0) = X2(0) + ¢(0 — )| < D(0) < (¢/2)}p — w}.
Therefore
(6.23) | X1(0) — X2(0)] = (¢/2)] — .
Now v = mé(1 — |6]2)~1/2, so that
180s/005] < c(1 — [0[2) 472 = e(m + o2 +9/2

for each ¢ and j. Since f(t,x,v) # 0, we have | X1(0)| < k and |V1(0)] < k,
whence |v| < P(t) < 3 by the second part of (6.17) and Lemma 6.3.2. Similarly
jw| < 8. Therefore
v —w| <e(l+ 8)30 — 1wl
By (6.23), we have | X1(0) — X2(0)| > ct|lv — w).
A brief remark is in order. If one attempts to remove the support assump-
tion on fp in v, a technical problem appears at exactly this juncture.

6.4. 'The Particle Densities
We assume that ¢ is small enough for the validity of Lemmas 6.3.2 and 6.3.3.

LEMMA 6.4.1 There is a positive constant ¢ such that

ffa(t,z,v) dv < cll follo(L +t)73 < clf follo(t + |z + 2k)—3

for all t >0, where || follo = sup, ; , | fao(z,v)|.

Proof. We recall that f,(t,z,v) = fao(X, V), where X = X4(0,¢,z,v) and
V = V4(0,t,z,v). We have |X| < k and |V| < k so that |v] < 8 by Lemma
6.3.2. So Lemma 6.4.1 is valid for t < 1. Now the integration in [ fo dv may
be taken over the set A = {v:|X]| < k}. By Lemma 6.3.3 the diameter of A
is at most 2k/(ct), and so its volume is at most O(¢t=3). Therefore [ fo dv is
at most ¢|| follot=3. The last incquality follows from the vanishing of fo(t, z,v)
for [x] >t + k.

LEMMA 6.4.2 There is a positive constant ¢ such that

IV falt,z,v)] < cll follx
and
[Vofalt,z,v)] < e(1+ )| folls,
where

il follr = sup {|fao(z,v)| + Ve fao(z, v)| + Vo fao(z, v)[} .

..V



172 THE CAUCHY PROBLEM IN KINETIC THEORY
Proof. Write Lo = Ot+0a-V+(FE+1a X B)- V4, so that the Vlasov equation
is Lo fo = 0. Again we drop the subscript a. Write X(s) = X (s,t,z,v) and

V(s) = V(s,t,z,v) as before. Fix a coordinate z; and let 8f = 8f/dz; for
brevity. Then

L(8f) = —(BE + o x 8B) - Vo f = h(t, z, ).

Thus p
7;10S(s, X(s), V(s))] = h(s, X (s), V(s))-

Integrating from 0 to 7 < t, we have

01(r, X(), V() = (X (0). V(O + (s, X(s), V(s)) ds,

so that

" In(s + |1 X(s)] + 2K)| Vo £ (s, X (s), V(s))]
Ve f(r, X(7), V(O < Nfolly + 1K h /0 T IXG) T 2R = 1X () § 2R

< ol +e /0 T 5, X(0), Vo)) s

by Lemmas 6.3.1 and 6.3.2. We write this for brevity as
(6.21) VeI < ol +e [ 16)I9f ()] ds
Now let Df = Of/0v;. Then
IL(Df)| = | = Db-Vaf — Do x B-Vyf| <|Vaf| +|B||V.f].
Integrating as above, we have
VoSG XV < ol + [ 71+ BITL Ao X (61, V(5) ds

<ol + / V. £ ds

T |V flds
+l|K||0/0 (s + | X (s)| 4 2k)(s — | X (s)] + 2k)°

where V. f and V,f are evaluated at (s, X(s),V(s)). The last kernel is at
most ¢(1 + s)—2, as above. Since it is integrable, an application of Gronwall’s
inequality yields

(6.25) Vi) < c [llfolll + " V8] ds] .
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We now have (6.24) and (6.25), where I(s) = (1 + s)~3In(2 +s). Substituting
(6.24) into (6.25) we have

Vo f(T)| € cco(l +7)+ 2 /T(T — 8)I(s)|Vyf(s)]ds,
0
where co = || fo|l1. Therefore
o) = (47T S+ e [ L+ 910)g(s)ds

Since (1 + s)I(s) is also integrable, we deduce by Gronwall again that g(7) is
bounded. By (6.24), |V.f] is also bounded for 0 < 7 < t. The bounds are
independent of 7,t,x and v. Putting 7 = t we conclude that

Ve f(tz,v)| = [Vef(t, X () V)] < c

and
Vo f(tz, )| = Vo f(t, X(2), V() < e(1 +2).

6.5. Estimates on the Fields

As we showed above, the characteristics, defined by (6.13) and (6.14), exist
globally. Because |0X/8s| = IiA/I < 1, and fao has support in {|z] < k},
the particle density fo(t,z,v) defined by (6.15) has support in |z| < t + k.
Therefore so do j and p. Therefore E* and B*, the solutions of Maxwell’s
equations with these sources, also have supports in |z| < ¢t + k. In order to
prove Theorem 6.2.2, it remains to show that ||K*|| < ¢ for € and ¢ sufficiently
small.

LEMMA 6.5.1 There is a constant ¢ > O so that
1K *llo < ceo(1 + | Kflo)

for all K € K provided ¢ is sufficiently small.

Proof. We begin with the representation formula for E* from Chapter 5,
i.e., from Theorem 3 of [15]; namely,

(6.26) E* = E: + E} + E,

where the terms are given explicitly as follows:
Ex(t,z) = Ze / / whba o gy 2
i g)<tJ 1+ 0o w Ty~ 2

‘—Zea/ / [‘”“ﬁ } (E + i x B) fo dv—2_

[y—x|<t P+ 0q - w ]y“— i
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where fﬂ = fﬂ(t.—‘y——‘rl’y’v)a E= E(t—‘y_xl’y)9 B = B(t—ly—x\,y), W=
(y — z)/|ly — x| and So = 8¢ + 0o - Vi from the last chapter. Next, we have

Et,x) = Zea/ W+ %) = |%al?) .\ dy

ly—z|<t (1 + Y - w)2 ly - xlz'

The term E; is the sum of the solution £(¢,z) of the homogeneous (“free”)
Maxwell equations with the same initial data and of the boundary term arising
from integration by parts in y (using the fact that T} is an exact derivative).
The latter involves the expression

(P - W)Vai
E wjaj =

1+'Ua'

(see the proof of Theorem 5.3.1 where the expression a; is deﬁned). Therefore

(6.27) Ei(t,z)=E(t,z) — Ze“/

ly—

W — (Vo W
= t/ 1J(rv = fao(y, v) dv dS,,

where

(6.28) £(t,x) = [Eo(y) + ((y — 2) - V)Eo(y) +tV x Bo(y)] dS,

dmt? ly—z|=t
1
- — €a /i)afa(O,y,v) dvdS,.
ATt Jiy—z)=t 5
Now Ej is easy to estimate. Both of its terms have supports in |t — |z|| < k
because fao(y,v), Eo(y) and Bo(y) have supports in |y| < k. Furthermore, both
of them possess a factor t—!. Therefore we can replace t-1 by (¢t + |z| + 2k) 1,

and we can insert arbitrary factors of ¢t — |z| + 2k. Hence

[1E2llo < c(liEollcr + | Boller + llfolico) -

As for the main terms E}. and EY, we note that the kernels are bounded
because |v| < 3 (by Theorem 6.2.1) and |w| = 1. Thus

|Ex(t, )] <cZ/ m((t/fa(t«la: yl, y,v)dvi d:E,z

< cso/ (t— |z =yl + |yl +2k) 3y — z|2p dy,
ly—x|<t

where p = 1 for |yl <t —|z~y|+kand ¢ =0 for |y >t — |z —y| + &k,
since fo(r,y,v) =0 for |y| > 7+ k and [ fo(7,z,v)dv < ¢||follo(L + 7)~3 <
ceo(T + |y| + 2k)~3 by Lemma 6.4.1. Similarly

|E3(t,z)] < CZ/

ly—z|<t

/fa(t — |z —yl,y,v) dv|K(t - |z — yl, y)lﬁa

SCéollKllo/ (t = o =yl + ly] + 2k) 4

ly—zi<t
(t— |z —y| — |yl +2k)" Yy — | pdy.
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By Lemma 6.5.2 below, we can reduce these triple integrals to double integrals:

(6.29) |EL(t,2)| < -Cfﬂ/ / (74 X+ 2k) 73AdAS dr

7_

, t b
(6.30) |EY(t,x)] < &”:% /0 / (T 4+ A+2k)4(r — A+ 2k)" Y ApdAdr,

where p =0 for A>1+k,a=|r—t+71],b=r+t—-7,r=|z|, A= |y| and
7 = t—|z—y|. It suffices to show that [E5(t, x)| < eco(t+r+2k)-1(t—r+2k)~1
and |E4(t, z)| < ceol|Kllo(t 47 + 2k)-1(t —r 4+ 2k)~1, plus the same estimates
for B*(t, x), which are very similar.

Consider the integral in (6.30). We estimate (7 + A + 2k)~'A < 1 and
(T = A+ 2k)~1p < k~1. Denote by

r x>0
S(I):{O x <0

Then the integral in (6.30) is less than

1 P b-a)(b+ a4+ 27 + 4k)
k)3 d\dr d
// (T+4+2 Jo (rta+ 2k)2(r +o+ 262

g et t+ 2k "
k /o (t — 7+ 2k)2(t + 7 + 2k)2
2 [ (t — 7)(2r + 27 + 4k) dr
+ k /S(,ﬁr) (27 + 71—t + 2K)2(t + 7 + 2k)2

The first integral is at most er(t — r+ 2k)~1(t + r + 2k)~ 1. In the second one,
we use t — 7 < rand 2r + 27 + 4k < 2(t + 7 + 2k), so we get at most

cr /{ dr < _cr /°° dr
t+r+2k fo 27+ =t 28)2 T b+ 2k [ (T +2k)%

which is also less than er(t — r + 2k) -1t + r + 2k)~!, since r < t + k.

The integral in (6.29) is also broken up at 7 = s(t — r). For 7 < s(t — ),
we write A < b =r+t—7 < 2(t —7) in order to reduce it to one of the
integrals already estimated. On the other hand, for T > s(t — r), we estimate
A <74 A+ 2k to obtain

d/\dT t dr
<2 —— < 2r(t — 2k 1t +2k)!
/(t r) / (r+2k)2(t—71) ~ -/s(t—r) (T+2k)2 — rlt =T 2k )

since r < t + k. Thus each integral in (6.29) and (6.30) is dominated by a
constant times (r(t + r+ 2k)~1(t — r + 2k)~1). This establishes the required
estimates for £* and essentially completes the proof of Lemma 6.5.1 since the
estimates for B* are identical.
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Indeed, from Theorem 3 of [15], using the methods of the last chapter, we
have (for a single species, say) the representation

(6.31) B* = B; + B} + B,

where Bj is given by a formula similar to (6.27) (and hence depends only on
the data), and

w X B 02 d
By = [ Sa iy - sl o

(1+97
ly—zi<t
. (wxv o dy
5= o~ /' (590 = ly =y, ) o2
y—xi<t
f/ [(wxv)] (E+v><B)fdv‘ d_m!
ly—x|<t

Again the kernels appearing here are bounded because |v| < 3 by Theorem
6.2.1 and |w| = 1. Hence B} and B are estimable exactly as in (6.29) and
(6.30).

LEMMA 6.5.2 For any continuous function g(r,A} of two real variables,
and h{o) of one real variable,

|zl4t—T
/ g(t — |z —yl, lyDh(lz -y dy = — // (T, M)A dA(t — TYR(t — 1) dT,
i

ly—z]<t e i+7|

where the integration on the left is over a ball in R3.

Proof. The left side can be written as

/Ot f'r_yl:t_r g(7, lyl) dSy h(t — 7) dr.

So it suffices to show that

27 (t — 2n(t—1) falt—r

/ g(7.lyl) dS, = g(m, A dA.
|z —yl=t—7 |$| [lz]—t+T]
That is, for any function f,
org [lElte
| stwnds, - AF) dA.
le~yl=a ' I ) —-ai

By symmetry we may take x = (0,0,7). Then

/ly—:c|=a f(yl)dSy = 02/ flz + owl) dw

jwl=1

= 27r02/ sing f ((r2 4+ 0% + 2ro cos )'/2) de.
0
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Changing variables now by A = (r2 + 02 4 2ro cos ¢)'/2, we obtain the desired
result.

6.6. Estimates on Derivatives of the Fields

In this section we shall estimate ||K*||;. Lemma 6.6.1 (below) together with
Lemma 6.5.1 will provide the bound

K= < cea(l+ 1K + [ KI?).

Therefore if | K} < e, if € is sufficiently small for the validity of the previous
estimates, if € < 1/2 and if €9 < €/(2¢), then | K*|| < e. As remarked earlier,
this will prove Theorem 6.2.2 and therefore Theorem 6.1.1.

LEMMA 6.6.1 There is a constant ¢ such that

1Kl < eso(1 + 1 K]7).

Proof. We differentiate the representation formula (6.26) for £*, repeating
the technique given in the previous chapter. Thus the derivative 8/0zk of the
ith component of E* is

v i Wi + Vai)(1 = [Dal?) dy
ME*(t,x) = O B3 Z // 0460 o) akfadvl o

Wi + Vai . dy
«Zea// [1+UQ w} -8k{(E+vaxB)fa}dv|y_ml

integrated over |y — x| < t and over all v € R3. The derivative Ok is broken into
T; and S components as before. Each integration by parts in the tangential
variables 7} brings in a term at the base ¢ = 0 of the cone. Repeating the
method of the last chapter (which is Theorem 4 of [15]), we write the result as

(6.32) OE*t = A, + Ay + Arr + Ars + Ast + Ass.

The various terms are given as follows. (For notational simplicity, we drop the
subscripts a and take mq = eq = 1).

Ay = //a(w,ﬁ)fdv‘@,ﬁ’

ATS+AST—/ bw,)Sf dv—"— dy 5
ly — =
dy

———/ va(w,f‘)(E‘f-lA) XB)fd’UE/——xlz,

Ass =//C(w,1))52fdv 4y ,
: ly — x|
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where the kernels a, b and ¢ are found by the methods of the last chapter. The
integration ranges over |y — z| <t and v € R3. The expression A, is the sum

of all the terms involving the initial data, namely, with w = (y — z)/|y — =|,
(6.33)

: 1 1
A, =R E} — z // d{w, ¥} fo(y, v) dvdSy + n // e(w,0)Sf(0,y,v) dvdSy,
ly—x|=t ly—z|=t

where d and e are kernels which once again are bounded for bounded v (see
the proof of Theorem 5.4.1). These integrals come from the passage from E3.
to Arr, and from EY to Ast, respectively. However in the passage from EJ}.
to Arr we also pick up the term

Ay =f /d(w,ﬁ)f(t,:z,v) dw dv,
jwi=1

because of the singularity |y —z|~2 at the vertex of the cone where y = x. Now
we shall estimate each term in (6.32).
The “vertex term” is estimated using Lemma 6.4.1 as

|Aw| < C/ f(ta xz, U) dv < 050(1 + t)"3’

which is more than sufficient. The “base term” A, has several parts. One is
an integral involving derivatives of Fp and Bp up to order two, obtained by
differentiating (6.28). Since the integration is on the sphere |y — z| = t and
since |yl < k, it has support in |t — |z|| < k. Also, it is of the order O(t—1).
Hence it is O((t + |z| + 2k)~Y(t — |z| + 2k)~2). The other parts of A, are
the derivatives of the last terms in (6.27), (6.28). They are O(t—!) times an
integral over |y — z| = ¢, and so are estimated in the same way as the first part.
The integrals appearing in (6.33) have the same general form. In the last term
in (6.33) appears the expression Sf(0,z,v) = ~(Eo + © x By) - Vy fo, which
once again has its support in |z| < k. Therefore

| Az (b 2)| < cft + |z| + 2k) 7 (¢ — |} + 2k) 2 (W Eollc2 + | Bollc + 1 foller)-

The kernel a(w, ) in Arr is bounded because |v| < 3. We break Arr up
into two parts. The part over the “base” or “shell” 1 < |y — x| < t is less than

dy
c t—lz—ylyv)dv——z
[§|y—m]§t/f( | hv.v) ly — z3

< cllfollo / ey 2
Sly—z|<t

ceo t=t b Ad) dr
le| Jo  Jo (THX+2k)3(t—71)2’

dy

ly —z|?

<

where a = |r —t+7|,b =r+t — 7 and r = |z| as before, by Lemmas 6.4.1
and 6.5.2. The last integral is estimated as follows. (Assume ¢ > 2 or else the
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estimate is trivial.) It is broken into the intervals {0,¢/2] and [t/2,t — 1]:

t b—a

2 4 Y2 b d\ ; 4 ;
< = T _dr< =
/(; “tZ/O _/a (A+ 7+ 2k)? T—tz o (a+7+2k)(b+ 1+ 2k) T
4 stt=r) 9y ¢ 20t — 7)
- _—  d d
tz(t+7‘+2k){_/0 t*T‘f‘Zk T+L(t~r)2r+r—t+2k T

4 1 t
<2 oy €t —7)d
—t2(t+r+2k){ T+t—r+2k/3(t_r) (t=7) T}

<ce(t+r+2k)-2(t —r+ 2k)-1r,

since r < t + k. On the other hand,

t—-1 t—1 b t—1
dr dr
< (t/2 + 2k *3/ / AdA——— :47‘(t/2+2k)*3/
/t/2 / ) t/2 Ja (t—71)2 g2 t—T

crIn(t + r + 2k)
(t+ 7+ 2k)3

<er(t+1)-3(1 +1n(t/2)) <

since r < t 4+ k. This takes care of the “base” part of Apr.

Because of the singularity at y = x, we must use the fact that the kernel
a{w,?) has zero average on |w| = 1. Therefore the “tip” of Arr, that is, the
integral over |y — x| < 1 is equal to

[ fate il e =) - g e = o 2o

We use the Mean Value Theorem to represent the difference, and then use
Lemma 6.4.2, We note that the integration ranges only over the set

A(r) ={v | X(0,7,z,v)] <k forall ze[z,y]}

where [z, y] is the line segment joining x and y and where 7 =t — |z — y|. By
Lemma 6.4.1, this sct has diameter at most ¢/(7 + 2). Therefore the integral
is bounded by

dy CEQ
c 24¢t— |z~ -3 < ,
”foul./|y~a:]<l( I y|) ly_m‘Q (1+t)3

which is more than sufficient for our purposes. This completes the estimation
of Arr.
Next, Ars + Agr is bounded by

t b
cll folloll Ko %/D /., (T+)\+2k)~4(Ta,\+2k)_1)wd/\t_cér_;’

where ¢ = 0 for A > 7 + k, as we did several times before by the definition of
I|Klo and by Lemmas 6.4.1 and 6.5.2. To estimate this integral, we note that
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(T=A+2k)"'¢ <k-land 7+ A+2k > 7+a+2k >t —r+2k. So the integral
is less than

AdA dr
- -2 -1
kr(t—r+2k // (T+ A+ 2k t—7 <e(t—r+2k)=2(t +r + 2k)

by the previous estimate of the integral in (6.29).
It remains to estimate Ags. To do this, we decompose it into five terms as
in Chapter 5 (which is Eq. (66) of {15]) as

AdrAgs =1 + 1T 4 1T + IV! + V7,

The first is

dv dy

/ f(E4+0x B)-Vy[Vye- (E+9x B)]

< c/ fdleP I

Adidr
< cllfollollKIIG = // (T + A+ 26)5(T — A + 2k)2

by Lemmas 6.3.2, 6.4.1 and 6.5.2 again. The second is

|H|=‘//fvvc°S(E+ﬁxB) dv dy
|y — =

1Y In(r 4 A4 2k)AdA
ScufOHOHKNI;/O /ﬂ (T+I,l\(+2k)4(7. —))\+2k)2'

The integral in | is less than the integral in II, so it suffices to estimate the
latter. In the integral in I we replace In(r + A + 2k) by In(t + r + 2k) and A
by 7 + A + 2k in order to obtain the upper bound

In(t+r+2k)/t/b dAdr
o0 Jo (T+ XN+ 2K)3(1 — A+ 2k)2

1 t+r do o dg
< —In (t+r+2k)/|t--r| T 2hp /—k ————-—————(ﬂ+2k)2

= clnt + r + 2k){(|t — 7| + 2k)=2 — (t + r + 2k)~2}.

[}

We replace |t — r| by t — r to obtain at most

der(t + 2k)(t —r +2k)72(t + r 4+ 2k)2In(t + 7 + 2k)
<der(t —r+ 2k)2(t + 7 + 2k)~n(t + 7 + 2k)

as desired.
The third term in Agg is

III=/féjef6ijM,
ly — x|
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where ¢jp = (80 — 0;0¢)(1 + |v|2)~1/2¢(w, ©) is bounded. Hence III is estimated
exactly as II was. Next, the fourth term

V'] —i //c]me o (fK ){dvd”’ ] gc/ fdvuqzly‘f/x’

is estimated exactly as I was. The fifth term is

Wi dv dy
"' = e K6 — —22 | T, Ly
/f" [ 1+«>-w] i

As above, the integration ranges over the ball |y — z| < ¢t. We integrate by
parts in T}, obtaining on the one hand the term on |y — z| = t,

1

t // Cewi(1 40 - w) 1 KY0,y) foly,v) dvdSy,
y—r|=t

which is treated just like the integrals in A,. On the other hand, we also obtain
terms bounded by

// IV K] dvdy // dvdy
Jly—z{<t Jy— rl<( »TIZ

Of these resulting integrals, the first one is estimated just as II was, and the
second one is estimated just as Aprg + Agr was. This completes the proof of
Lemma 6.6.1.

We conclude this chapter with a brief description of the generalization of
this result to the “nearly neutral” case. Details can be found in [10]. In this
reference the same regularity and support properties are imposed on the initial
data. Moreover, the same smallness conditions are imposed on the initial fields.
However, the individual plasma densities may be “large”, provided that they
“almost cancel” in the following sense. Let

galt,2.0) = fult,z,mav), g8(z,v) = f3(z,mav).

Then the smallness condition on the plasma densities may be expressed by
saying that the expression
> eamigl
[e]

is small in the C! sense. Thus, cancellation is allowed, whereas the resuit in
the current chapter requires that each individual plasma density be small.
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Chapter 7

VELOCITY AVERAGES: WEAK SOLUTIONS
TO THE VLASOV-MAXWELL SYSTEM

7.1. Sketch of the Problem

For many nonlinear problems, one uses the following steps. Firstly, a conve-
nient approximation is chosen. This approximation scheme should satisfy the
dual criteria that the modified problem is “easily” solvable, and that it retain
the expected a priori bounds. Then one uses compactness to pass to the limit
(in the sense of distributions) in the modified problem. What follows appeared
originally in DiPerna-Lions [3]; we also use the approach in Kruse [14].

Let compatible data fo > 0, Ep, Bo be prescribed at t = 0. Let & be the
standard Friedrichs mollifier. We will consider two approximation schemes.
Firstly, consider the modified system

OFE =c¢V x B — j¢ V-E=p
OB =-cVxE V-B=0.

Below the function v(z) represents a given neutralizing background density,
and p =dx [ fdv—v(z); j=4r [vfdv; j¢ =8 *j. By the work of Horst
[11}, an initial- value problem for this system possesses global smooth solutions
for fixed € > 0. Let (f, £, B™) be such an approximate solution correspond-
ing to é6,. {We abuse notation with the mollifier). We have

(7.2) //(f”)2 dvdr = const.,
/ lvl2 fr dudx + / (|JEn|2 + |B"|?) dz = const.

Assuming f7(0.xz,v) > 0, we have by weak compactness a subsequence {ny}
such that

(7.3) Ere ~E, B — B in L2((0,T) x R3);

(7.4) fre — f in L2((0,T) x R3 x Bp).
185
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Thus 9y f* — 0, f in D'((0,00) x R3 x Bg), etc. So we can easily pass to the
limit in the first two terms of the Vlasov equation. The same remark is valid
for the first-derivative terms in the Maxwell system.

In order to study the convergence of the nonlinear term in (MVM), let
¢ € D((0,00) x R3 x R3), We want to examine

(7.5) /f S(E™ +v x B - Vo fn do dz dt
= -—// Ve (E™ +v x Br)frdvdzdt.
Here we are faced with a familiar problem, namely of passing to a weak limit

in a product expression, each factor of which converges weakly. If we take
¢ = ¢(t, z)¥(v) (which is enough by density) we need convergence of e.g.,

(7.6) / / (t. ) En(t, 2) - / V(W) frdvdzdt  for € D(RY).

Here i = V, V. If we knew strong convergence

/ G )(o) do — f (- 0)$@)dv in L2((0,T) x Br)

for arbitrary T, R, we are done. This is exactly a consequence of the velocity
averaging smoothing mechanism, cf. [7], [6] and {3]. We will deduce that
Jjm — j in D' from strong L-convergence

(7.7) ff"(-,-,v)w(v)dv——»/f(-,-,v)w(v)dv in LY((0,T) x Br)

for continuous ¥ with ¥(v) = o(|v|?) as |v| — oco.
There is another regularization, due to Lions and DiPerna {3]. We take
f§ =0, f§ € D(RS) such that

(18 [[ W= 50+ 1P + 1o JiPl dods —0 w5 e

R6

Take Ef, Bg € D(R3) with

| Eo — E§ll2 — 0,
“BO - Bf)”z — 0.
Consider (with ¢ = 1)
(79) Btfe+’U‘vxf€+(E€+’UXB€)'VUfE=0,

OtEc —V x B + e(—A)3E = —j¢,
01Be +V x E¢ +¢(—A)3B¢ = (;



WEAK SOLUTIONS TO THE VLASOV-MAXWELL SYSTEM 187

fﬁ‘t=0 =15 Eélt:() = Eg, BEIt:O = B§.
Then f¢ > 0, [[lfe(t,z,v)lPdvde = [|f§]pdvdz for any p, 1 < p < o0,
and

d
(7.10) 2 [/ o2 f¢ dv dz + / (|E<|? + |B|?) dz]
dt i Jge R®
+ e/ (ID3E€|2 + |D3B¢|?)dxr = 0.
RB
Thus the same basic bounds hold.

7.2. The Velocity Averaging Smoothing Effect
The first such results (cf. [1}, [6], [7]) asserted this: if f € L2(R x R3 x R3) is
a solution of

(7.11) Of +v-Vof =g L2(R x R3 x R%)

then for ¥ € D(R3), [ f(¢,z,v)¢¥(v)dv € H'/2(R x R3). Thus averaging
in velocity improves regularity in the space and time variables. For Vlasov-
Maxwell we need g to be a v-derivative. If ¢ = Zlal <m D%go with go €
L2(R x R3 x R3), then the conclusion is

1

(7.12) /f(t,a:,v)w(v) dve HS(R x R3) where s= m

THEOREM 7.2.1 Let m € N, R € (0,00), ¢ € D(Bg). Let f € L2(R x
R3 x Bpr) satisfy

(7.13) fe+v-Vef= Y Dgga  in D'(RxR3x Bp)
lal<m

where go € L2(R x R3 x Bg) for all a, || < m. Then there exists a constant
¢ > 0 depending on m, R, ¥ such that

1
(7.14) /BR Fl, - v)(v)dv € H3(R x R3), 8= 2+ m)
and
(7.15)

<e liflez@xroxsa + 3 l9alli2@xrsxBr)

H” |af<m

f('v "y U)l/)(’U) dv
Br

Proof. We will give the proof in the case of m = 1 only. Extend f to
0 outside of [0,T]. Let (7,£) be the dual variables of the Fourier Transform
f('v s v)d)(v) dv

f+s f. Then
2
<c / / ’ / Fr & v)u(v) dv
Bp Hs
(7.16) < ll¢|l§||f‘ll§+//’/f(r,s,v)w(v)dv

2
(14 |7[* + |€]%°) de dr

2

(71> + l€]**) dé dr.
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Define
(7.17) I(,8) = /f(r,g,u)w(v) dv € L2(R x R3).

Let ¢ € D(R); ¢ =1 on [~1,1]; supp ¢ € (-2,2); 0 < ¢ < 1. We split the
integral I as follows:

1= [ fngonc (TEEE) avr [ e [i-c(TEEE)] a
=hL+ I

This comes from the Fourier Transform of the equation (7.13):

(7.18) (it +iv- ) f(r,6,v) = Y D¥fa.

lal<1

The parameter K will be chosen later.
For I; we have

(7.19) |L| < (/lf(T’E,v)lz dv)l/2 (/dﬂ(v)gz (T*'I;'f) dv)llz

r T (2 1/2
< Iollaoll F (7€, 2 ( /B c2< e 5) dv)

The {~integral I is less than

T+v-§
7.20 / _ ( ) dv.
( ) B Xi[-2,2 1%
The integrand is nonzero for TJ;"{ <2 ie,for 2K —7<v-{£<2K —r.
Therefore
(7.21) I < /;3 X[—zK-T,2K~r](U'f)dv~
R

We can assume that |7| < R|§|+2K. Indeed, let v € Br. Then |7| > R|¢|+2K
implies |7| > |||¢|+2K > |v-&|+2K > |7|—|r+v-&|+2K, e, |T+v-£| > 2K,
and ((---) = 0 there. Thus we can write (with A = |v||¢] cos )

I < Xyr|<Rig) 42K /B X[-2K —r2K ~7](v - &) dv
RR ™
= X|r|<R|E|+2K ° / / 21X (-2K —7,2K —1] ([V]|§| c08 ) sin 6 dB|v|? d]v|
o Jo

RI¢]
S2WR'X'T|SRIE|+2KI£I—1fR‘El X[-2K -7 2K ~7](A) dA

< ecrKE|7 X 1< RIg| 42K -
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Hence

1/2
(7.22) [l < ellf(m, & Mz - Xjri<riei+2x - (%) :

For Iz, we use the equation (7.18) and integrate by parts:

B~ [ frg ool - ddv=-i 3 [ 2 p) - a

jal<1
(et
==—z§:./(;nma/gqrgqg0a “ﬁ(i+i<£K ))]du

o)<

v

 p—

H
Thus with |§] = max|ge|, |a| =0, 1,

2] < cllg(r, & 2 (1D Hll2 + {{Hl2) -

Now by direct computation,

Dl =¢ , RIDC- 91 | il ¢l m}

lr+v- €| I+ v-& |7 +v-£|2

< e 22020 ool v 61

I€1x8g(v)
[T+ v - £J?

< exBa(v )XIT+11£!>K!T+’U &= 1<1+ lﬂ)

1D, H| Sc[

Xirtvgzr(l = C)]

For H itself we have |H| < X2 I(Tv+[:]*'5|ll <! as in the first term above. Thus for
|a] = 0 or 1 we have

/2
4 '/ dv '

DgH|z <c(1+ = g2 K

I llz_C( g ) U, XK [T TR

d 1/2

(switch to spherical coordinates, and then put A = |v||€| cos )

1/2
€LY 1e1-1/2 N/RM‘ dA
0. — oo A)———
( €1~ - X(~o0,~ K)U(K,00) (T + )(/\+T)2
1/2
ey ([ du
= C|£|~1/2 (1 + = / X(—o0,—K) (K,oo)(l/)_"
K ) \Jr-rig ? v
ey (" °° v
< cfgl-1/2 (1 —) (/ v—2 du+/ v—2 du)
K/ \J-w K

.
<e(rieh- (1+5]).
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This bound can be improved on the set where (1 — () # 0: if we also assume
that || > R|¢| + 2K > R|¢|, then we have

T+RIE| 1/2
(7.23) | DoH|2 < cl¢|-1/2 (1 + ‘—E—l) ( / l/'zdu)
K J \Jr-Rig

e €| 1 1 1V
= clél ™2 (1 * 75) [T ZRlE T+ RIEI]

i€l 1
= cRl/? (1 + T{_) RPN

Therefore
. _ 1€l -1 2 priezy-1]’
[I2| < ellg(r, & Mz {1+ i X|r|<Rriel+2K (KIED ™" + Xjr|>Rig1 42 (T° — R7|E]%)
It follows that
|\ < [+ |12
< (& Mz + Ng(r. &, )ll2)-
K ) €2 €1\ 2 . 1/2
[{E * 5@ (%) }X'T'S’*"'”" Fxmaian (4 ) ‘rmr] |

When ¢} < 1 we take K = 1. Then
(7.24)

1/2
R ) B X|r|>Ri§1+2
I <ec (||f(.,7£,.)||2 + 1§(7. €, -)||2) [lcﬂ "Xiri<Rigi+2 + ;z_:ﬁ@?] '

When €| > 1, we take K = [¢|1/2. Then
(7.25)

- 1/2
1% ¢ (U7 € M + 19,6 M) (1617 i< mierane + stz et mis 2|

Recall that I(r,£) = [ f(7,€,v)¥(v) dv, and that s = 1/4 when m = 1. Thus

az) | [ Fn o) dy 2

H1/4

2
< II31A1E + f / | [ vy ao] (rive+ g2 de ar

—

J

Write J = J1 + - - + J5, where
= / / (7, )27 [1/2X e dE dr

s = [ [ UG O xg<ixis na dedr
J3=/ (7, )17} 2x(e1<1 X r < R42 dE dT5
si= [ [ ore e dear
55 = [ [ e g ds o
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Abbreviate &(r, ) = || f(r, €, )llz + 1§(7, €, )il2. Now

(7.27) J1 < c// D2, E)xje|>1 [X(T|SR1§[+2Klel/Qlfl"l/z

(1+ €D
72 el
Recall that K = |£|1/2 when |£| > 1. In the first term, |7| < R|¢| + 2]€]/2 <
(R+2)|¢] in J¢] > 1. Thus |7|1/2|£]=1/2 < cg. In the second term,

M2+ €] _ 1+ [¢]
T2 = R2E)2 T |7f3/2 — R2|gfR)r| 12
1+ ¢l
RIE| +2K)%/? — R2IE2(RIE| + 2K) 1/
_ 1+ ¢l
(R} + 2K)~1/2[R?[¢]2 + 4RKE| + 4K2 — R2[¢[?]
1+l
(R+2)~1/2[¢|=1/2 - ARK|¢|
CR.

+ X|r|>Rigl+2k |12 ]d§d7’-

<
—(

IA

fA

Thus

(7.28) Ji <cr //@2(7‘,6) d€ dr.

For J; we have

(7.29) Ja < C// P2(T,E)Xje)<1X|r(> R+2 [Xmgmg[nlﬂ’llﬂl/z
/2
+ Xiri>Rlg|+2 mﬁ] d¢ dr.
The first term vanishes because R + 2 < |7| < R|¢| + 2 which implies |[£] > 1,
a contradiction. For the second term, we have
7172 N 12
= = <e.

T2~ R2EZ T 2 (7] -2)2  4lr|-4  2r|+2(7|-2) ~
Thus

(7.30) Jz < c// $2 d¢ dr.

For J3 we have simply

(7.31) |J3] =/ [1(7, 12712 X161 <1 X|r| < Rt 2 dE AT

2
< (R+2)1/2//!/f('r,f,v)w(v)dv dt dr
< (R+2)1209 |31 f13 < el f1I3.
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In J4 we have [¢| > 1, hence

1/2 3/2
(732) J4 < C// QZ(T,E)X|£|>1 [1 +X|T|>R|€|+2K%] dde

Now

1€11/2 4 |¢]3/2 < 1€]1/2 + 1372
T2 — R?€|2 T (R|¢] +2K)? - R?|¢|?
e+ g
" 4R|¢|K +4K?
1€]1/2 + [€]3/2
= 4RKI¢|
<cr

(7.33)

because K = |£]1/2 in this case.
Lastly, for J5 we write

(7.34) Js = / f H(r O)RIEN i1 dE dr < e fIZ as in Ji.

Collecting all such terms, we get

(7.35) ‘

/ S o) () do
Br

< c(IFN3 + g /2.
H/4(RxR3)
This proves Theorem 7.2.1.

7.3. Convergence of the Current Density

THEOREM 7.3.1 Let

f € C1(]0,00) x R3 x R3)
En, Bn € CO([0, 00) x R3)

be classical solutions of (MV M) such that

(i) fr > 0 for all n,

(i) [[(fr)2dvdz < cg for all n,

(ii1) [[|v|2 frdvdz + [(|E"|2 + |B"|?)dz < c3 for all n.

For T > 0 arbitrary let f» — f in L2((0,T) x R3 x R3) through a subsequence
{nx}. Let v € CO(R3) satisfy |Y(v)] = o(|v]?) as |v| — oo. Then for every
S < oo,

(7.36) / £ ) () do — / FC - 0)o() dv in L((0,T), Bs).
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Proof. f > 0a.e. because for all bounded measurable sets A C (0, oc) xR3xR3,
(7.37) / fdvdzdt = lim [ frxdvdxdt > 0.

A k—soo J4

Similarly, for any measurable set A C (0,T),

(7.38) f[//flvpdvdxdt:plg{.lo//‘/& /Bpf|v|2dvdzdt.

= lim lim f/ frelvi2dvdz dt
p—oc k—oc AJB, /B,

< e3lA|.

Hence [[ flv|2dvdz < c3 a.e. t € (0,T), and thus

/ //f|¢ldvdrdt / //f;wwvdde/ //fhﬂ (ol dv de dt

BSBC
(7.39) < |S‘|1<P1 W’(v)l“f”L?((o,T)xmsXmB) -¢TV/2|Bg|t/?
4 sup Iw(v2)| cesT
lv>1 o]
< 00.

Thus by Fubini’s Theorem, the integral [ f(-, -, v)¥(v) dv belongs to L1((0,T) x
Bs).

To get the Ll-convergence we proceed with several steps.

Step 1: Let ¥ € D; assume also that f7 is bounded in Lo ({0, T) x R3 x R3).
We have 0¢f* +v -V, f" =V, - g%, where

(7.40) g3 = —(E™ +v x Bn)fn.
Take (s € P(R), (s =1 on [6,T], supp s C (£,27), 0 < ¢ < 1. Put
=G(t) " 915 = CGOf" 955 = Cs(t)gF

Then
Oufff +v-Vaff =97+ Vo g3

holds in D'. By hypothesis, f, g 5 are bounded in L2(R x R3 x R3). Moreover,
g5 5 is bounded in L?(R x R3 x Bg) for all R > 0, because by our additional
assumption

(7.41)// (95 5)? dvdzdt < eI E= // |[E" +v x B*|2dvdzdt
Bpg 6/2 Br

< er - esT) fr)|%.
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Take R such that supp ¥ C Bgr. We know from Theorem 7.2.1 that

(7.42) |

/ 2y 0)(v) do

1/2
< e (17913 + g7 13 + 19313

H/4(RxR?)

where these L2 norms are taken over R x R3 x Bg. By compactness, there
exists a subsequence {ny} and a function hs € L2((0,T) x Bg) such that

(7.43) /fglk(~, Sv)Y(v)dv — hs in L2((0,T) x Bg).

Now diagonalize (by taking rational 6’s) to obtain a subsequence independent
of 6. Call it f§* again. By weak convergence,

(@49) [ £ do — [GOIC v o in LH(OT) x B).
Therefore

(7.45) hs = / ()G o)) dv ae. on [0,T) x Bs.

In particular,

(140) [ f3Cw@do = [ GOSC o) do i LH(O,T) x Bs),
Hence

dz dt

/ ' / s [z - [ 0,2,

(7.47) =/<)6/;35 /f"wdz)—/fwdv

+ /5 ' / S [etwrvan— [rva

< behoostllp/o&/Bs /;?R f"dvdxdt+||w||oo/06f35 Bﬁfdvdmdt
o

The last term tends to 0 as n — oo by (7.46). For the second term we have

dx dt

dz dt

LY((0,T)YxBs) .

(7.48) 0< fe L2((0,T) x Bs x Bg)
because the norm is weakly lower semi-continuous. Hence

(7.49) 0< feLY((0,T) x Bs x Br)
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and thus the second term can be made arbitrarily small for  small by absolute
continuity. The same argument applies to the first term in (7.47).

Step 2: Assume only ¥ € D(R3). Let
T
Bs(r) = 1+ 67

Thus 3s(0) = 0, and the triple (3s(f"), E™, B") satisfy (MV M). Moreover,
we clearly have Bs(f") < 6! so 35(f") is bounded in L>((0,00) x R3 x R3).
As before, there exists a subsequence such that

6>0,72>0.

(7.50) Bs(f™) — fs in L2((0,T) x RS) (because Gs(f") < f")
and for fixed T, S,
(7.51) /)85 v)dv — /f,s , 5 u)Y(v) du

(through a subsequence) in L1((0,7) x Bs). The subsequence can be chosen
independently of é via diagonalization.

Now since Fs(fn) < fm, we have for every bounded measurable A C
(0,00) x RS,

/féd'vdl'dt: lim /ﬁg(f")dudmdtg lim /fndvdxdt=/fdvdxdt.
A 12— 00 A n—o0 A A

Thus fs < f a.e. Therefore

/ |f—f5|dvdmdt:/ (f — fs)dvdzdt
(0,T)xBsxBr (0,T)xBsxBg

(7.52) = lim /OT) . (fr— Bs(f))dvdzdt

n—oo (

< sup/ (f* — Bs(f™)) dvdxdt.
(0,7)YxBsxBp

n

For R such that supp ¥ C Br,

(7.53) /OT/B /fnwdv~ffwdv
s/OT/BS /ﬁa(f")d’dv—/fwdv

dx dt

dzr dt

+/0T/Bs [ o= [ sty ao do
+./0T/Bs /fgwdv—ffwdv da dt
S/T/Bg /ﬁé(fn)wdv~/fm/)dv dz dt

+ 2(| %]l SUP/ / / — Bs(f)) dvdz dt.
Bs J By
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By the above Ll-convergence, the first term tends to 0 as n — oo. For the
second term we compute

@5 0 =Bl = - e = fl <o

Thus the second term is less than

2||¥|| 6T ca.
This completes Step 2.

Step 3: Let ¥ € CJ(R3). Take ¥, € D(R3) with ||tm — |2 — 0; T, S fixed.
By Step 2, there is a subsequence such that, for each m,

(7.55) / frap, dv "= / fmdv in LY((0,T) x Bs).

Therefore
[rvav- [ roan

A
g/OT/BS/fnw—wmldudde/OT/BS
+/T/33]f|¢-wm|dudzdt

S W 2oy xBsxr3) - 1Y = Ymll2 - cT.s

[ ronsr 1

+ W20, 1yx B xr3) - ¥ — Ymll2 - cr 5.

dx dt

dz dt

[ rimdo = [ omdv

dx dt

Choose m first so that the first and third terms are arbitrarily small. Then
take n large to make the second term small.

Step 4: Let ¢ be as in the Theorem, ¥(v) = o(|v|?), |v] — oo. Take {ar €
D(R3), (p =1on By, 0<¢m <1, for M € N. Apply Step 3 to {m¥. By
diagonalization, for fixed T > 0, S > 0, there is a subsequence f™ such that
for all M € N,

/f"CMlZfdv—-’/fCMd)dv as n— oo
in L1((0,T) x Bg). Write

(7.56) /OT[B [rvav= [ roa
SSlfllp/OT/BS/fn(l—CM)lwldvdmdt

+/0Tfas [rawsao- [ s
+/0T/BS/f(1~<M)|widvdwdt.

dz dt

dz dt
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For fixed M, the second term — 0 by the strong L! convergence above. The
third tern — 0 as M — oo by dominated convergence. For the first term we
have

T
(7.57) sup/ / (1 — Ca)|y| dvda dt
< su o)) su / / / frivi2dvdxdt
|v1>M 'Ul Bg J|v|>M
< sup M-c;;T—>0 as M — oo.
lvl>M IU'Q

This completes the proof of Theorem 7.3.1.
COROLLARY Assume in addition that for oll T > 0, P > 0,

is relatively weakly

r n(t . )2 -
(7.58) {fmt,-.)?:neN te0,T]} compact in L'(Bp x Bp).

Then for all v € D(R3), there exists a subsequence such that

(7.59) / o o)(v) dv — f S o)) do

strongly in L2((0,T) x Bg).

Remark: Given this we can pass to the limit in 7 in the approximate equa-
tions for (f™, 7, B") and thus there exists a weak global solution.

Proof. We know that [ f7(.,-,v)¢¥(v)dv — [ f(-.-,v)¥(v)dvin L}{(0,T)x
Bg) through a subsequence. Passing to yet another subqequence, we can as-
sume that this convergence also holds a.e. on (0,T) x Bg. Now we claim that
{(f f(-,-, v)¥(v) dv)?} is relatively weakly compact in L1((0,7") x Bs). We
use the Dunford -Pettis Theorem for this (cf. [5, p. 292]).

For the proof of the claim, we need to show that

{(J fr¥ dv)?} is bounded in L'((0,T) x Bs);

(ii) for all € > 0, there exists § > 0 such that for all A C (0,7) x Bs with
|A| < 8, and for all n,

(7.60) / / ( / f"wdv)2 dzdt < e.
A

(i) follows from the hypotheses of the Theorem and the Schwarz inequality.
For (ii): take P = max(R,S) (where supp ¢ C Bgr). Write 4; = {x € Bs :
(t,z) € A}. Let A be measurable with |A] < §2. Then

(7.61) // (/fmp@)g da:dt=/0T/B XAl(a:)( i f”z/}dv)z dr dt
4 o "
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2
=/ / xa,(z) (/ fnzpdv) dx dt
{te(0,17):|A¢|>8} V Bs Br

2
+/ / XAt(l')( f"zbdv) dz dt
{te(0,T):|A,{<8} / Bs Br
= L1 + La.

Now we assert that |{t € (0,T) : |A:] > 6§} < 8. For if not, we get

T
|A|=/ |At|dt2/ | 4| dt > 62
0 {1€(0,T): A >6}

which i1s a contradiction to the size of the measure of A. Therefore

(7.62) Lo < g [ [ [ irpdvaza
{te(o,T):lAﬂ)ﬁ} Bg JBpr
< 28|93
Next,
(7.63) Ls < [[¥]2 f / / Fn 2 dv dz dt.
{te(0,T):\A( |6} /Bs v Bgr

This integral can be made arbitrarily small in view of |A; x Bgr| < §|Bg| and
the hypothesis of weak L! compactness. (The Dunford-Pettis theorem gives
a characterization of weak compactness in L1 via a necessary and sufficient
condition; thus the remaining integral is taken only over a set of small measure,
and so the integral itself can be made arbitrarily small). This proves (ii) and
the weak Ll-compactness.

Now, to finish the proof of the Corollary, we apply the Vitali Convergence
Theorem. Because we are working on a bounded set, we need two ingredients.
They are the pointwise convergence of a subsequence

/f"(-,-,v)v,b(v)dv——)/f(-,-,v)zp(v)dv a.e.on (0,T) x Bg

{which follows from the already established Ll-convergence) and the estimate
(7.60). Strong convergence of a subsequence in L2((0,T) x Bg) now follows.

7.4. Completion of the Proof

Several details remain to be treated. These include the regularization of the
initial data, the manner in which the initial data are assumed, and the satis-
faction of the divergence-type constraints in the Maxwell equations. We will
sketch some of these arguments; full details may be found in Theorem 4.1.1 in
[14] and in {3].

We assume that the compatible initial data satisfies the following:

//(1 + v2)fodvdr < 00, fo>0ae, foe L2(RS), Eg, Bo € L2(R3).
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We find a sequence fJ' > 0 such that

g — fo in L%2(RS), freD and //(1 + )| f§ = foldvdx — 0.

Similarly, we approximate in L2(R3)-norm the data for E, B by test functions
E}., BY. Then for every n and every T' > 0, there exists P such that for all
t € [0,T], supp f(t,-,-) C Bp x Bp. We have

(7.64) f/ |fn)? dvd;z::/ (f)2dvdr < e

//f"dvd:c:/ frdvdr < c.

From the approximation of fo in L? by fJ, we have the existence of a non-
negative function 3 € C°°(R) which satisfies 3(0) = 0. limy 0 t=23(t) = o0,
and

n

(7.65) sup//,ﬁ’(fé“)dvdm < 0.

Hence also

// B(f7)dvdx < const. = Sy.

For the existence of such a function 3, see [14], Lemmma 4.3.6 where a proof of
G. Schliichtermann is presented.

By the Dunford--Pettis Theorem, we need to show that for each € > 0,
there exists § > 0 such that for all measurable A C Bp x Bp with [4] < 6,
and for all n and for all t € [0,T] we have [[ ,|f"|?dvdr <e.

Let € > 0. Choose o > 0 such that QTLZ—) > 2%1 for all T > 0. Let 6 <
let A C Bp x Bp have |A| < 8. Then

(7.66) //]f")zdvdx: (/ +/ )|fn|2dvda:
S AN{fr(t,)<o}  JAN{fr (¢, ) >0}

50'2/ dvd:c+—€~/ B(fr)dvdz
AN{fr<a} 251 Janysrsoy

€
< g2 —_— <
_U|A1+251 Sl_e

€ .
207>

as desired.

Thus the major theorem is established: the existence of a global weak
solution (f, F, B) to the initial value problem for the Vlasov-Maxwell System
((7.1) with j¢ = j). As for the regularity of solutions, one gets by this method

f € Loo([0,00); L1(R®) N L2(IRY))
E,B e L>=([0.00); L2(R3)).
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Moreover, for suitably chosen representatives we have

f € C([0,00); W-52(B%)) for every s >0, P > 0,
E,B € C([0,00); W~2(B3)) for every s > 0,P >0

and the initial values are assumed in this sense. These continuity properties
follow from applications of the Arzela Ascoli theoremn and the Rellich com-
pactness theorem. Furthermore, the following quantities are dominated at any
time t > 0 by their initial values: the L2(R8)-norm of f, and the total energy
(the left-hand side of the second expression in (7.2) with the superscripts of n
dropped), while the L1{R%)-norm of f is invariant.

In the sense of distributions one shows that 9;p+ V-7 = 0 and then, using
this and the Maxwell equations themselves, one shows (again in the sense of
distributions) that

In view of the constraints imposed on the initial values, we see that the time
independent divergence—type constraints in the Maxwell equations then hold.

The relativistic version of this weak global solvability is also treated in [14].

For the approach developed in this chapter, no higher regularity nor unique-
ness is known at present. An interesting feature is that there is essentially no
difference between the nonrelativistic and relativistic problems in this method.
Yet for smooth solvability, we have seen drastic differences between the two
problems in Chapters 5 and 6.
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Chapter 8

CONVERGENCE OF A PARTICLE METHOD FOR
THE VLASOV-MAXWELL SYSTEM

8.1. Introduction

As we have seen, the Vlasov-Maxwell system models the time evolution of a
collisionless plasma. Here we study a particle simulation for the relativistic
Vlasov-Maxwell system. In one space dimension (and only one momentum
dimension) Maxwell’s equations degenerate to Poisson’s equation. Particle
simulation of this case has been analyzed by Cottet and Raviart [2}, [3] (see also
[18], [19]). Particle methods have also been analyzed for higher-dimensional
problems [6] where Maxwell’s equations are replaced by Poisson’s equation. A
particle method for a three-dimensional symmetric Vlasov-Poisson system is
treated in [16]. In {13], [14] convergence results in a measure theoretic sense
are presented, while a general introduction to particle methods may be found
in {15].

In order to retain the hyperbolic structure of the problem we consider
the “one and one-half” dimensional model, in which there is only one spatial
variable but two momentum variables. We consider the relativistic version of
this model; hence from [7] we know the global existence of smooth solutions
and, moreover, a uniform (in space and time) bound on the electromagnetic
fields. The analysis presented here is taken from [8] and appears to be the
first to obtain a convergence result for a particle method where the coupling
in the underlying problem involves the Maxwell equations. This algorithm
has been implemented in [9]. Particle methods are good choices for several
reasons. Among these are the natural use of finitely many particles to model a
continuum, and the preservation of the positivity of the phase-space densities.
Related algorithms appear in {10], [11].

Thus we consider the “one and one—half dimensional” Vlasov—-Maxwell sys-
tem with one species of charge in a neutralizing background density. We seek
f(t,z,p), E(t,z), B(t,z) (where t > 0; z, f, B are scalar; p = (p1,p2) and
E= (El, EQ)) such that

Of +v1(p)0:f +q(E+ BMu(p)) Vof =0,

(RVM) OFE1 = —4rj, O E1 = 4mp,
203
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8tE2 = “aq-B - 47Tj29

atB = _azEZ
with
f(O,:L',p) = fo(x,p) >0,
Ea(0,2) = E(z),  B(0,z) = BY(x),
and .
Ex(0.2) = 4r [ p(0)dy = EY(e).
Here

o) = m + ) M= (0 ),

itz =g / £(t,2,p)v(p) dp,
olt,z) = q / £(t.2,p) dp - v(z)

where the given neutralizing background density v(z) has compact support
and is chosen so that

/p(O,m)da: =0.

When m = 1, v(p) = p in our notation in previous chapters. We make this
change in order to simplify the notation for the algorithm below. We assume
that all data functions are smooth and compactly supported. Note that the
initial condition for E; is prescribed by f(0,z,v). In fact, since

BQ:EI = 47rp

we have *

Ei(t,z) =4~ / p(t,y) dy + const.

—0oQ

But by the initial condition for E; we have

(8.1) Ei(t, 2) = &1]p)l(t,2)
where we define
(8.2) ol =47 [ otu)dy

Note also that
9 (47r | atw dy) o, (47r /_ (q [ sturdp- u(y)) dy)
= —47rq/ /vx(p)azf(t,y,p) dp dy

- —47rq/vl(P)f(t:$’p) dp
= —4mji(t, z),
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so the two equations
O FEy = —4nj; and O Fy = 4mp

are consistent.

Note that the speed of light has been normalized to unity. Henceforth we
will also take the charge ¢ and the rest mass m of each charged particle to be
unity:.

In order to get a representation for the fields, we write

3t(E2 -+ B) + (‘)I(Ez + B) = —4nja,

so for any h > 0

t+h
(8.3) (E2+ B)lt4+h,e) = (B2 + B)|(t.z—n) — 47f/ Ja(r,z = [t + h —7])dT.
t

Similarly,

t+h
(84) (Ez - B)l(t+ft,z) = (EQ — B)I(t,$+h) — 47r/ ‘]'2(7'7 x4+ [t + h— T]) dT,
t
and hence
Ey(t + h,) = —;—[Eg(t,m _ b+ Ea(t,z + k) + B(t,x — h) — B(t,z + h)]
t+h
(8.5) ~27r/ (o, —t—h+71)+ja(r,c+t+h—7))dr
t
and
B(t+ h,z) = %{Eg(t,x ~R) = Ea(t,z + ) + B(t,z — h) + B(t, 5 + h)]

t+h
(8.6) —277/ (je(riz—t—h+71)~jo(r,z+t+h—71))dr
¢

Define the characteristics X'(s, ¢, z,p) and P(s,t,z,p) by

d
ZX = =
ds UI(P)7 X(t’ t, I7p) J"’

4

(8.7) ds

P = E(s,X)+ B(s, X)Mv(P), P(t,t,z,p) =p.
Now f(t,z,p) is nonnegative and uniformly bounded since for s > 0 we have

f(t,z,p) = f(s,X(s,t,z,p), P(s,t,,p))
(8.8) = fO(X(0,t,z,p), P(0,t,z,p)).
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Also, as in Chapter 5 (see also [7]), the map
(z,p) = (X(s,t,7,p), P(s,t, 2,p))

is measure preserving.

8.2. The Particle Simulation
Let Az, Ap, € be positive. We will denote A = max{Axz, Ap}. Define

C% = {{z,p) : uAz < z < (o1 +1)Ax, a28p < p1 < (a2+1)Ap, azAp < p2 < (az+1)Ap}

1 1 1
Co = ((al + 5) Az, (Otz + 5) Ap, (ag + 5) Ap) .

¢ = fO(C*)Az(Ap)%;

this will be the charge of a particle whose initial state will be C*. Let

and

Let

A={aeZ:qx+#0}.

This set is finite by hypothesis.
Define S, 6., and 6, by

C1-z] ifle <L,
Ste) = {0 if |z > 1,

be(x) = e-15(e1x),
and

) = [ " be(y) dy.

6 will give the “shape” of each particle.
We also define a uniform grid on [0,00) x R :

[y

3
tn = fi =0,-,1,=,---,
ne or n ) ,2

zk =ke for k € Z.

Note that the time step and the spatial step in this grid are both £, which is
(so far) unrelated to Az or Ap. Quantities pertaining to this grid are indexed
with Roman letters, e.g., t" and z*. Quantities pertaining to the phase space
grid are indexed with Greek letters, e.g., C.

To start the simulation define

(8.9) E(0, zk) = E9(z*),
B(0,z%) = B(z*),

Xe(0) = (a1 + %) Az,

Pa(t1/2) = P(t1/2,0,C),
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for all k € Z and a € Z3. We note that P(t1/2,0,C) would not be known in
practice, but we consider this definition of Pe(t1/ 2) for simplicity. A comment
on the inclusion of these errors appears in the “Summing the Errors” section
below.

To define the simulation iteratively assume that for some n € {0,1,2,---}

E(tr, zk), B(tr, zk), Xo(tr), Pa(tn+1/2)
are known approximations of
E(trn, zk), B(tn, k), X(t7,0,Ce), P(tn+1/2,0,C)

forall k € Z and o € Z3.
First define

(8.10) Xeo(t) = Xa(tn) + (t ~ t0)v (Pa(tr+1/2))

for all t € [t7,t7+1]. Next define

(8.11) pin+,z) =) q¥6(z — Xa(tn+l)) — v(z)

for all z € R, and

Eq(tntl, zk) = & [p](tn+1, x*)

for all k € Z. Note that £ is the exact solution operator. We may compute
this explicitly:

zk

(8.12) Ey(tn+1, zk) :47r/ p(trtl, y) dy

xR

—an Y [ ly-Aemnydy—an [ vdy

— o0

x*

=4 Z g0 (zk — Xo(tnt1)) — 47r/ v(y) dy.

—00

Next for all z € R and t € [t»,t7+1) define
(8.13) Rty =3 qo6. (.r _ i’ﬂ(t)) ve (ﬁa(tnﬂ/z)) ,
and then (for all & € Z) define

En(tr+l, zk) = % [Ez(t", xh=1) + Ea(tn, zk+1) + B(tn,zF—1) — B(tn,xm)]
tﬂ+l

(8.14) "2”/ [ga(r, z+-1 —tn 4 7) + jo(r, k¥ 4 ¢7 — 1)] dr
tn
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and

. 17-~ . . -
B(m+,a%) = [Ez(tn,:z:k~1) — By(tr, ak+1) + B(tr, z5-1) + B(t”,zk“)]
g+l
(8.15) - 2#/ [3'2(7, zh=1 — 7 4 1) — jo(r,k+1 4 4n — T)] dr
tﬂ
Agam note that the exact field operators are used. Due to the special structure

of 72 (constant velocities) we may compute E> and B explicitly. We need the
value of

g+l
Jo(r,zk—1 —tn 4 1) dr

tn
en+1

— anvz(rﬁa(tnﬂn))f bu(ahmt — tn 47— ()

tn
Let

2(1) = gk-1 —tn 4 7 — Xa(r)
=1 gn 47 — Xa(tn) — vy (P (tn+1/2)) (1 — tr).

Then 2/(7) = 1 — v (P (t"+1/2)) so that

tn+1

Jo(r, k=1 —tn 4 7) dr
tn
tn+l

=3 goun (Po(tn+1/2)) [1 - wa(Po(n+1/2))] - [ 6e(2(r)2! () dr

- o Do (4n41 0 (z(tn+1)) — Be(2(t7))
_za:q V2 (73 (tn+ /2)) | on(Pa(int12))

o Da(in+1/2 ee(xk - ,\?a(tn-}—l)) - of(mk_l — i’a(tn))
= ;q va (P (gnt1/ )) [ 1 — vy (Pa(tn+172)) } '

Similarly,

t"+1
/ Ja(r,zh+l +4n — 1) dr
tﬂ

tn+l

=3 qov (Paeriir)) / Be(ah+1 4 7 — 7 — (7)) dr
[ ] tr

= g (Poen) (14 m(Peperi)

: ((95(.7,-'c+1 ~ Xa(tn)) — O (ak — ;Ga(tnﬂ))) .
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Now that E(t*+1,z) and B(tr+1,z) are defined for z € {x} : k € Z}, we
define them for all z € R by linear interpolation. Although definitions (8.14)
and (8.15) could be used for values of z & {zx : k € Z}, this would require
much more computation. We also comment that the linear interpolation may
be written as (for example)

B(tn,z) = Z B(tr, x*)b.(x — z*)
k

which indicates that the method is momentum preserving as described in [1].
Finally, we define P (¢"+3/2) implicitly by

'ﬁa(tn+3/2) — 'ﬁa(tn+1/2) + 6E (t"‘H, /?a(tn+1))
(8.16) e (i1, Xo(er)) M - % [p(Pe(tnr1/2)) + v('ﬁa(zn+3/2))] ‘

Although (8.16) is a nonlinear system, it is always explicitly and uniquely solv-
able for Po(7+3/2). We may obtain this solution by solving for |Pe(1n+3/2)]
first, and then by substituting this into (8.16) to obtain a pair of linear equa-
tions. Thus one step of the iteration has been completed.

We point out that the above scheme is fully discrete, but that difference
schemes have not been used to solve Maxwell’s equations. Rather, Maxwell’s
equations are solved ezactly for approximate sources (5 and j), thus eliminating
one corruption present in most discrete particle methods. This scheme may
be implemented with an operation count on the order of C{(Ax)-1(Ap)—2 per
timestep. This is comparable to the operation count incurred when difference
schemes are used to solve Maxwell's equations.

The main theorem is the following.

THEOREM 8.2.1 Let smooth initial data for (RVM) be given as above and
lete, A, X, Po E, and B be as above. Let Cy > 0 be given; then there exists

C:[0,00) — [0,00)
such that for all ¢ and A such that

A< Cie and esup|B(t,z)| <1
z,t

we have
sup {|(7,0,C2) = Bo(7)| + [P(r,0,C%) = Pa(r)] :a € A, 7 € [0,1]}
+ sup {IE(T, z) — E(r,z)| + |B(r,z) — B(r,2)| : T € [0,8), z € R}
<Ct)e+e1A2)
for all t in some time interval {0, T¢ a]. Furthermore,

lim T, A = +oc.
e—0t
A<Cre
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Comments

(1) From [7] it is known that B is uniformly bounded, so the “stability”
condition

esup|B| <1

is attainable. Also, if the charge ¢ and rest mass m were not unity, the “sta-
bility” condition would be

elglm-tsup|B] < 1.

The bounds on F> and B result from an energy identity. Let

e(t,z) = %IEP + %B2 + 4w/f\/1 + |p|2 dp.

Then
Ore + 0y (EzB + 47T/fp1 dp) =0.

Given z and t we integrate this over
((r9):0<r<tandlz—y|<t-7)

and apply Green’s Theorem. There results (using 1|E|2 + $B? > |E2B|)
T+t t
[ e0mdvzan [ [ 10 —ten ) [VIFHE - p] dpar
T—t 0
t
+47r/ /f(r,:c +t—1T1,p) [\/1 + |p|? +p1] dpdr.
0

Now that e(0,y) is integrable over R by assumption. A short computation

shows that
V1+1pl2 £ p1 > |v(p2)l

(this is done below), so

CZ47r/0t/f('r,x—t+T, p)v(p2)|dpdr
+ar /O / f(rz+t — 7, p)lo(p2)| dpdr
> 4n/t 2072 £+ )| + jalro + £ = )] dr.
(4]

Uniform bounds for E; and B now follow from (8.5) and (8.6) when we sub-
stitute ¢t = 0, h = t in those equations.

(2) The function
e e+e"1A2
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is minimal when € = A, in which case

e+e 1A% =2A.
(3) The work [2] establishes the better estimate of

C(t)(e2 + e~1A2).

Here the extra power of ¢ is lost due to the fully discrete nature of the scheme.
For convenience we will write

Pa(t) = Pe(tn+1/?)

for t e [t7,tn+1) . Now we have

Xo(t) = X (0) + /O vi(Pe(7)) dr

for all t > 0. We will also write

S(t) = sup {IP(t,O,x,p)I H(z,p) e | C‘*} ,

acA
S(t) = sup{|Pe(t)} : @ € A}.
It is shown in [7] that
S(t) < C(1 +1)?

but we are unable to obtain such an a priori bound for S. Thus convergence
estimates will be made using S, then a posteriori, the convergence estimates
will be used to bound S. Note that

[p1]
(8.17) 1— |vi(p)| =1 Niyare
_ W+ 1pl2 = Ip (VL + P2 + [pal)
V1+Ipl2(V1+ [Pl + |p1)
1+p3
~2(1+|pf?)

1 |p2]
= "“”‘{2(1 TR T+ lpl2}

so for (z,p) € supp f(¢,-,")

(8.18) T—_lm <201+ S%(1) < O

and for a € Z3 such that fO(C<) # 0,

(8.19) 2(1 + 5()2).

— <
L —Jun (Pe(t)))
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We will also write

(8.20) &(t) = max { sup{|X(r,0,0%) — Xo(7)| :a € A, 0 < 7 < t},

sup{|P(r,0,Ce) —Pa(r)|:a € A, 0< T < t}}.

Constants C may depend on the Cauchy data but will be independent of ¢, z, p
and of all numerical parameters k,n,qa, Az, Ap and €. Cr denotes a similar
constant, but one which will be used in estimates which need only hold for
0<t<LT.

8.3. The Field Errors

Consider the errors in the fields at the gridpoint (t",z*). From (8.3)

t'"
(E2 + B)I(t"’,.’rk) = (Eg + BO)|Ik__tn - 471'/ j2('r, :I:k -t 4+ ’T) dT.
0

Similarly, from (8.14) and (8.15)

tn

(Ez -+ .B)kcnymk) = (E'z + B)I(tn-\,mk——l) — 41!'] 32(7‘, Tk —tn 4 T) dr

tn—1

tn
= (B2 + B)loa*—tn) — 4“/ Ja(r,zk —t™ + 1) dr.
0

Now by (8.9)

tn
[(E2 + B) —(Ez2 + B)]I(t",z") = —471'/ (42 — j2)'(‘r,x’°-—t"+'r) dr.
0
Thus

1 - -
(8.21) 1 (B2 4 B) — (E2 + B)||(tn %) < Moll + Quad + Sep

T

where we define

tﬂ
(8.22) Moll = l/ (jz(r, zk —tn 4 1) —/jz('r,y)ée(:r’C ~tn 47 —17) dy) d’T',
0

(8.23) Quad = l/ﬂtn (/jg(r,y)&s(zk —th+ 1 —-y)dy

~ 5" qebe(ak ~ tn + 7 = X(7,0,C))0a(P(7,0, Ca))) drl,
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and
tn
(8:24) Sep = | 3 g0 / (8e(a — tn 47— X(r,0,C®))ua(P(r,0,C=)
a 0
= 8e(ak — tn 47— Ro (7)) (Pa(r))) dr].
Note that by (8.8)
[ iatrtetat = e v 7 -y dy
= [[ 160w pictar — e 7 = pyuato) dpy
= [ [ 120X0.7,,0, PO, 7390 = 17+ 7 = yyualo) dpdy

= / fo(x’p)(SE(;ck —tn+T - X(Ta Ov .’E,p))Ug(P(T, 07 xap» dpd:l?,

SO

tn
Quad = / ( / f FOz,p)be(a* = t™ + 7 — X(7,0,,p))v2(P(r,0,2.p)) dpdz
0

(8.25) - ZfO(C“)Az(Ap)zég(mk — "+ 17— X(1,0,0%)v2(P(7, 0, C“))) dr

[£3

Thus “Quad” is the error in the midpoint rule applied to the function

(z,p) — /Ot f9x,p)be(zk — tn + 7 — X(7,0,z,p))v2(P(7,0,2,p)) dr.

Note that “Moll” and “Quad” involve only the exact solution, which is
known to be smooth. Thus these two terms are the errors in standard approxi-
mations involving smooth functions, and may be estimated in a fairly standard
way. However, the third term (“Sep”) involves the separation of the exact and
approximate characteristics, and is harder and more intimately linked with
the specific problem. Thus we consider “Sep” first. We will need the following
lemma.

LEMMA 8.3.1 Fort <T andr € R
‘anf (6g(x—t+T—X(T,0,CQ))—(55(1'—"t+T—-/\?a(T)))dT‘
o 0
+ ’Zq" /t(és(x+t —7=X(r,0,C%)) = bc(x +t — 7 — /‘?Q(T)))d‘l',
- 0
< Cr(1+ 5())2E(1).

Proof. Let a € A and let

)=z —t+1—-X(7,0,C)
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and
)=z —t+ 71~ Xo(T).

Note that by (8.18)

(8.26) 2(7) = 1 — 01 (P(r,0,C)) > -Cl—
T

and by (8.19)

(1) = 1 — v (Po(r L
(8.27) #(r) =1 — v (Pa(r)) > T Ew)

Hence for T € [0,t] we may define z~1 and z-1 by
271 z(r))=71 and Z (i (7)) =T

Note that 2(0) = z(0) and write

/ [6:(2(7)) — e(3(r))] dr = / [‘55(2(”)zf(7)~‘5i.(f‘”(—7—)lz'(r)] ar

2'(1) (r)
_ z(t) (C) _ &) 55(0
(8.28) /z(o) 2z~ 1(C))dC /z(o) Z(271¢) “
1 1
A 6E(C){ "(=7H0) 5'(5“1(0)} “
P60
+/A w0 %
where
A = min{z(t), g(t)}, B= max{z(t),i(t)},
and

_f 2ozt if 2(t) > Z(t),
Y=\ m 051 if 2(t) < 3(t).

Next, using (8.26) and (8.27) we have for ¢ € [0, A]

1 ‘ 2(271Q) = #(271(9))
Z(z71Q)  #( ‘1(C)) (2712 (271(¢))
< Cr(1+ 8(1))2 [12/(z71(¢)) — 2/ (21O + | (3-1(¢)) — 2 (3-1(O)]]

< Or(1+5(n)? [212“(0 A (9] +?515|2’ - Z’q :

(8.29)

It follows from (8.26) that
(z~1Y| < Cr,
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so that
1271(¢) = 271(Q)| = |z=1({) — 2= (2(271({))]
< Crl¢ —2(271(Q))]
= Crl#(271(¢)) = 2=
= Cr|X(3-1((),0,C%) — X2(3-1(C))|
< C’Tf:'(r).
Also

[2/(r) = 2(7)| = |1 (P(7,0,C%)) — v1(P(7))]
< [P(r,0,C%) - Pa(r)| < E(7),
so (returning to (8.29)) we have

1 1

- S(r))2[2E(T) + E(7
1) T FEey| S i SPRED +EC)

< Cr(1+ S(1)2E(¢).
Note also that by (8.26) and (8.27)

1
0S5 <Cr (1 + 8(1))2.

so from (8.28)

7)) — 6 (2(7))] d7

B
<[ ? or 1+ 50 EW(O) de + [A 5:(0)Cr(1 + S(t))2 dC

- B
< Cr(1 + S(t))2 {5( /Aée(g)dc}.

Now using (8.30) for each a we have

(8.31)

Zq/(5(:L'~t+T——X(TOCa))—-(sg(.’l?—-t—FT—/?Q(T))]dT
) ) B
< Cr1+ 802 Lo [e(t) + [ a0 dc]
< Cr(1+ 5(t) [S(t +Zq / be ( )dg}

where

A = min{z(t), 2(t)} = min{z — X(t,0,C*),z — X=(t)},
B = max{z — X(t,0,C%),z — Xo(t)}.
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A crucial part of the argument is an estimate of the number of nonzero terms

in the sum
B
s fA 6:(C) €.

We will need the following lemma.

LEMMA 8.3.2 Givenxz € R and 5 > 0 let
A={aecA:|X(t0,C) —z| <7}
Then

Cr(n+ CrA)

inali A<
cardinality of A < Ar(Ap)?

Proof. By the smoothness of the solution to the original problem and by
continuity with respect to initial conditions we know that

Now if o € A and (z,q) € C®, then

lz — X(t,0,2,9)| < |z — X(t,0,Co)| +|X(t,0,C%) — X(¢,0, z, q)|
<n+CrA.

Hence

U (X(t,0,2,9) : (z.9) € Co} € (¢ —n — CrA,z + 1+ CrA),
ae-j

and

U {(x(2,0,2,9), P(t,0,2,9) : (2,9) € C=}
aEI

C(x-n—-CrA,z+n+CrA) x (-Cr,Cr) x (-Cr,Cr).
Next using the measure preserving property of (X, P), we have

CT(77+ CTA) > ( U {(X(t,(), z,q),'P(t,O,z, Q)) : (Z, Q) € Ca})

acA

-+(ye)

= Az(Ap)2card(A),

where “p” denotes Lebesgue measure on R3. Lemma 8.3.2 now follows.



CONVERGENCE OF A PARTICLE METHOD 217
Let us return to the proof of Lemma 8.3.1. We take = £ + £(t) and
A={oe A:|X(t,0,C2) —z| <e+E1)}.

Note that
(A,B) C (z — X(t,0,C2) — £(t), z — X(t,0,C) + £(t)).

If a € A\A, then
|z — X(t,0,C%)| > e + £(t)

and hence
(A, B)N (—¢,e) = 0.

But supp 6. C [—¢,¢€] so if o € A\ A then

B
f 5:(¢)dC =0,
A

and hence, by Lemma 8.3.2,

B B
Z‘f'/ 55(4)dc=zq“/ 66(¢)dc
o A A

aez

B
< card(4) max (qa / 8e(<) dC)
o A

Cr(E(t) + ¢ + Cra) - Y
§ T A ma (f (C*)Ax(Ap) /A

B

8¢ (C) dC)

<Cr [E‘(t)/b‘s(c) dc + (e + CTA)max/
¢ Ja

< Crl€(t) + (e + CrA)||8e |l L= max(B ~ A))

6¢(C) dC]

= Cr[E(t) + (£ + CrA)e ™ max(B — A))

< CrlE@) + (1 + e 'CrA)é()]
< CTé(t).

Now by (8.31) we have

t
! > ge / [be(z —t+7 = X(1,0,C2)) — bc(x — t + 7 — X(T))] dT
- 0
< Cr(1+8(1)2E().
This is the first estimate asserted in Lemma 8.3.1. The other may be estab-

lished in a highly similar fashion by considering the other set of characteristics.
We omit these estimates.
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With Lemma 8.3.1 established we may now estimate “Sep” easily. From
(8.24)

tn
Sep <) q° / Be(@* — " 41 = X(1,0,C%) [12(P(7,0,0%)) = va(P*(7))| dr
o 0
tn.
-+
0

Zq"‘/ [65(:1:'c ~t"+ 7 - X(1,0,C%)) —65(:1:’° —t" 4T ‘i'“(r))]dr .

For the first term note that for all « € A
[02(P(7,0,C2)) - va(Po(r))| < &(r) < Eer)
and by (8.18)
-
/ be(xh —tn + 7 — X(7,0,C)) dr
0
<Cr / Se(xk —tr + 7 — X(1,0,CN)(1 — v1(P(7,0,C*))) dr
<cr [0 ic=cr.
Hence by Lemma 8.3.1
(8.33) Sep < Y q=Cré(tr) + Cr(1+ S(tn))2E(tn)
< Cr(1 + 8(t))2E(tn).
In order to estimate “Quad” we define (for given t7, z*)
hop) = [ P pse(oh ~ 17 7 = X(r,0,2,7)ua(P(r, 0,2, p)) d,
0

and note that by (8.25)

(8.34) Quad = l / / h(z,p)dpdz — )  H(C*)Az(Ap)>

3 [ (hiep) - hC) dpda

We may write

o
(8.35) h(z,p) = /(; % Oc(zk —tr + 7 — X(7,0,2,p))] 9(7, z,p) dT

="
= GE(xk ="+ T~ X(Ta O,fB,p))g(T,.’E,p)

T=

- / Oc(zk —t™ + 7 — X(7,0,z,p))0rg(7,z, p) dr,
0
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where
SOz, p)v2(P(7,0,2,p))
1- Ul(P(Tv 07 T, p))

Now since f0 € C?, v € C~, and X, P € C? we have that

g(r,z,p) =

8:P = E(1,X) + B(r, X)Mv(P) € C?,

and hence g and 8-g are C2. Next 6, € W2 s0 by (8.35), h € W2, Thus
by Taylor’s theorem and (8.34)

Quad = ‘Z/ [Vh(C")-((:c,p) 0%
) ° 1

(8.36) +/ (1_3)((55»17)—CO)TDZhl(C”‘+s[(z,p)~C°‘])(($1p)—'Ca)ds] dpdz
0

1
= ’Z/ / (1 _3)((z’p)—Ca)TD2h’|(C°‘+3|(I.p)—CQ])((va)'Ca)dsdpdg;
> JeeJo

1
< Z (1 — 5)(3A) ess sup |D2A|(3A)u(C*) ds
(s d 0 Ca

_ 9.2 2 2
= 2A (Az)(Ap) Zesscfuqu h|,

[e3

where D?h denotes the three-by-three matrix of second-order partial deriva-
tives of h with respect to x and p.

Let 8; and 82 denote any of 0z, 8p,,0p,. Now || = |6f] < 1/€? almost
everywhere so

|8132h| < Cre~? a.e.

However, at most points this bound may be improved. The most singular term
of D192k is

(8.37) SL(zk —tn + 7 — X)(81X)( X )glh
- / t BL(zk — tn 4 1 — X)(D1X)(82X)(Drg) dr,
0

the second part of which satisfies

t/ﬂtnéé(xk —t" 4+ 7 — X)W X)(0X)(0rg) d,rl

‘/ —*dT(és(x ‘f’—f—r‘/}:)) Ul( )T '
- 6 k _ tn (alx)(BQX)(a g) =t
5("L' g +7'—'X) ] —Ul(; ) T7=0
t 6 —tn 6 (alfY)(aQX)(aTg)
/0 E(m +7 _X)—ST ( 1——’01(] ) ) '

< Cret,
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where we abbreviate X = X(7,0, 2, p), etc. Hence
tﬂ
(838) Y| / SL(ak — 7 + 7 — X)(hX)(02X)(Drg) dr
— 1 Jo

=S| [ ek -4 - 00X @ Brg) dr

< Cre~!card (A)
< Cre~Y(Azx)-'(Ap)-2.

To estimate the first part of (8.37), note that for 7 = Q0 or t” and (z, p) € C=,
8L(zk —tn + 7 — X(7,0,z,p)) #0

implies
|k —tn + 7 - X(7,0,z,p)| <€,
and hence by (8.32)

2% — " + 7 - X(7,0,C%)| < |z* — 1" + 7 — X(7,0,%,p)| +|X(7,0,2,p) - X(7,0,C*)|
<e+Crl(z,p) — C°|
Le+ Crh.
Hence for 7 € {0,t"}
{a sup |8L(ak — 7+ 7 — X)) (B X)g] o}
CAr={ae A |zk —tn + 17— X(1,0,C*)| < e + CrA}
and by Lemma 8.3.2
card(A,) < Cr(e + CTA)(Az)-}(Ap) 2.
Thus (with A = Ap U A ) we have
(8.39) > ess sup |6L(ak ~ tn 4+ 7 — X)(O1X)(82X) gl
o

< (|I6]l 2 )Cr card (A)
< e~2C7(e + CrA)(Ax)~1(Ap)—2
< Cre~—1(Az)~'(Ap)-2.

Estimates like (8.39) may be made for all the other terms of 8,02k, so
combining (8.39) and (8.38) we have

Cr
< -
2w e 000ehl < o Ry
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It follows that

Cr
8.40 ess sup |D?h| < —c——,
(8.40) 2_esssw D < s
and hence by (8.36)
(8.41) Quad < Cre—1AZ

Finally, we estimate “Moll”. By Lemma 4.4 of [13] (with p = +o00, k = 2,
n = 1) we have

[iar.2) = [ dalr)setz - v) | < Ce21Rsalr) o

for all 7 > 0 and z € R. Thus from (8.22) we have

(8.42) Moll < Ce? /Ot" 102j2(7) || L=~ dT < Cre?.

Collecting (8.33), (8.41), and (8.42) we have by (8.21)
(8.43) |(B2+ B) = (Ba+ B)llgen oty < Cr (22 + 7142 + (1+ 5(tm)2€(tm) ).
Clearly, a similar analysis of the other set of characteristics will yield
(8.44) |(E2— B) — (Ez2 = B)||(pn oy < Cr (52 + A2 4 (14 §(m)2E () )
Now by (8.43) and (8.44)

|Ez — Ezll(gn ok) = %H(Ez + B) + (B2 — B)] = [(E2 + B) + (E2 — B)lll(pn 15,
(8.45) < %(I(Ez + B) = (E2 + B)ll(4n oy + (B2 ~ B) = (B2 — B)l}(n zx))
< Cr(e® + &7 A% 4 1+ SE™)PE()),
and similarly

(8.46) |B — Bll(tn z#) < Cr(e? +~1A2 4 [1 4 5(t7))2E(t7)).

Now we sketch the analogous estimate of £; — El. Let 0 = f f dp so that
p =0 —v. Then by (8.1) and (8.12)

.’Ek

Ey(tn, z*) — El(tn,mk) = 471'/

— 00

o(tr,y)dy — Am Y _ g0 (z*k — Xa(tn)).
As before, we write

1 -
(8.47) =B ah) - El(t",x’“)l < Moll; + Quad, + Sep,
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where we define

k

Moll; = /_; (o(t",y) - /a(t",Z)ée(y —z) dz) dy‘,

Quad, = fI /o(t",z)ég(y —2)dzdy — Zqﬂos(:nk — X(t“,O,Ca))‘,

Sepy = | 3 a°(6:(a* — X(t7,0,C2)) - bu(zk — Bo(tn))|.
As in the previous analysis we see that Quad, is equal to

I/U(t",z / be(y —z)dydz—ZqGG X(t",0,C))
= ‘//f(t p)be (zF —-z)dpdz~ange(xk X(t",0,Ce ))l

—| [ [ 1ometor - x(t.0,2,p) dpdz = 37 qob(a ~ (en,0,0)|.

so “Quad;” is the error in the midpoint rule applied to the function
(8.48) (z,p) = hi(z,p) = fO(z,p)f:(x* — X(1",0,z,p)).

In order to estimate “Molly” note first that

/j:o /a(tn,z)5e(y —2)dzdy = //j:o o(tn, 2)6.(y — 2)dy dz
_ f]m o(tn, 2)8. (z* — v) dv d2
- / ﬁ Uoo o (7, 2)6e (2% — v) dz dv,

where we have used the substitution
v=ugktz-y.

So by its definition
Mol}; = lf o(tr, z)dz — /f o(tn, z) dzbe (% — v)dv|.
Now we again use Lemma 4.4 of [13] and obtain

2 (/_m o(tn, z)dz) “Lw < Cre?.

(8.49) Moll; < Ce?
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For “Quad,” we again have (as in (8.36))

Quad; = !f/ hidpdz — Zhl(Ca)(Ap)2A:n

©

< —AZ(Az)(Ap)? ess sup |D2h
(Bo)(@pf 3 s sup Dl

]

Again |D?hi| < Cre~2 holds almost everywhere, but an improved bound is
possible at most points. Let

A:={a € A: thereexists (y,p) €C® suchthat |X(t",0,y,p)—z*| <e}.
By Lemma 8.3.2 we have
card(A) < Cr(e + CrA)(Az)-(Ap)—2.

Moreover we have from (8.40)

Cr
2 . r
(8.50) E esscfupID hi} < A (APE

X
Hence

Quad, < SA2(Az)(Ap)? Y D2

(&

2(Ax)(Ap)? {ZJF > }|D2h1|

acA  a€A-A

IA

(8.51)

IA

A?(Az)(Ap)? (Cre-2card(A) + Cre~1C(Az)~1(Ap)-2)
TA2(e2(e +CrA) +e-1)

Q3o wico

IN A
Q g
[P
[3%]
?

In order to estimate “Sep;”, let
A={ac A:|zk - X(t",0,02)| < £+ E(tn)}
and note that if o € A\A then either
(X(t",0,C2) > zk + & and Xo(tn) > 2% + ¢)

or
(X(t",0,C2) <zk —¢ and Xo(tn) < zk —¢).

In either case

B (zk — X(t7,0,C)) — O (zF — Xo(t)) =0
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Now by Lemma 8.3.2
card(A) < Cr(e + Cr&(tn))(Az)~1(Ap)-2

and by definition

Sep, = | 3 a2(Be(ak — X(tn,0,0%)) — O, (a+ — Fa(tn))

acA
<Y e / 8:(¢) ¢,
acA
where
A = min{zk — X(t",0,C?), zk — Xa(tn)},
B = max{zk — X(t",0,C), zk — Xo(tn)}.
Hence

23

(8.52)  Sep; < card(A) max (

B
/ «se(odc)
A
B
< Cr(e + Cré (")) max ( /A 5:(0) dc)

<or (enésuLm max(B ~ A) + Cré(en) [ 6.0 dc)
= Cr (max(B - 4) + Cré(m)
< Cré(m).

Collecting (8.49) - (8.52) we have

(8.53) |Er(tn, z%) — Ey(t7, 2%)| < Or(e? + e~ 1A2 + £(tn)).

We will need estimates of the field errors at all values of z (not just grid-
points), so we use the following lemma.

LEMMA 8.3.3 Let g € C?(R). For any real values a, b, G, Gp witha < b
we have

jot@) ~ |Go3 =5 + Gri—r| | < § max o (@)1o - o)

- 9(@)| + T—=1Gs — 90|

for all z € [a,b).
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Proof. Let z € [a,b]; then there exists £ € [a, b] such that

‘g(z‘) - [Ga-i’—f_l-;f Gy “] [

<[oto) - [at1g=2 + a0 =2] |

b—a b—a
o] o= +awi=s] - e + =
= 1"l — )(z — a) + |7 =2 (g(a) ~ Ga) + T (9(8) - G
< Sl @16~ a2 + 7="lg(e) ~ Gal + 1—1g(b) - Gil,

which establishes the lemma.

Recall that F and B are defined for « € (z*, z%+1) by linear interpolation.
Let b = z%+! and a = z*; then use of (8.45) and Lemma 8.3.3 yield

htl g

- 1 -
(B2 — Eall(sn zy < =102 E2(t™)|Looe? + |E2 — Eallyn ok
8 ( )

ZE—ICk
4

’EZ - E2“(tn@k+1)

k+1

< Cre* + (m .

< Cr(e? +e7 1A% + (1 4+ 8(t)?E()).

LT ;mk) (Crle® + e 1A% + (14 S(™))E(¢™)])

Similarly, using (8.45), (8.46) and (8.53) we have the following corollary.

COROLLARY Forallz € R

(B2 — E2| +|B — Bl + |E1 — Erl) [(n 2y < C7(e? + €712 + (14 SEM)HZER™)).

8.4. The Particle Errors

In this section we estimate
|X(t,0,0%) — X(t)] + |P(t,0,C) — Pa(t)].
We start by estimating
(X (tn+1,0,C) — Xa(in+1))],
Toward this goal we define the truncation error to be
Ty = X(t+1,0,Co) — X(t7,0,C2) — ev1 (P(t7+1/2,0,C2)),

and note that since 77 involves only the exact solution (which is smooth), we

have
|72 < Cred.
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Now by (8.10)

(8.54)
I"Y(tn-H’ 01 Ca) - /f'a(tn+1)|
= |[X(t",0,0) + evi (P(t"+1/2,0,C2)) + To] — [Xe(tn) + eul(ﬁa(tn“ﬂ))]‘

< |X(tm,0,02) — X (tr)] + efor (P(E2+1/2,0,C2)) — vy (P (tH1/2))| + | T2
< 1X(t7,0,0%) — X (tn)| + e|P(tn+1/2,0, Co) — Pa(tn+1/2)| + Cre3.

Next we obtain an estimate analogous to (8.54) for
|P(tn+3/2,0,C2) — Pa(tn+3/2)],

Define Q : R2 x R2 — R2 and Q : R2 x R2 — R2 by

(355 Q@) = p+ B+, 2) + B+, 2)M 3 (o(p) + 2(Q(z, )
and
836)  Qa,p) = p+ B+, 2) + eBlent, )M (o(p) +o(@(z.9)))
so that the definition (8.16) of P(t7+3/2) becomes

Po(tn+3/2) = Q(&o(un+1), Po(in+/2),

Q@ and Q may be shown to be well defined by explicitly solving (8.55) and
(8.56), as described following (8.16). We also define the truncation error to be

(8.57) Tp = P(t7+3/2 0,C*) — Q(X(t7+1,0,C), P(tn+1/2 0, Ce)),
so the error equation is

(8.58) P(tn+3/2 0,C) — Pa(tn+3/2) = Q(X(tn+1,0,C*), P(tr+1/2 0, Cv))
— Q(Xa(tn+1), Pa(tntl/2)) + T,

We will estimate the error by breaking up (8.58) as follows:

(8.59) |P(tn+3/2,0, Co) — Po(tn+3/2))|
< |Q(X(t"+1,0, Co), P(tn+1/2,0,C)) — Q(z?a(t"+1),']3a(tn+l/2))‘

+ | QU (), Po(tm41/2)) — Q(Aex(tt), Pex(tr1/2))| + 1T,
LEMMA 8.4.1 For all z,y € R and p,w € R2

lQ(mv P) - Q(ysp)l < CTE{.’E - yl
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and
|Q(z,p) — Q(z,w)| < (1 + 2{B(t"+!, z)le)lp — w|.

Proof. Differentiating (8.55) with respect to z we get
1 1
0:Q =¢ (BxE + ((%B)Ma [v(p) +v(Q)] + §BM(D’U)BIQ> ,

where we abbreviate Q = Q(z,p), £ = E(t"*1 1), etc.,, and Dv denotes a
two-by—two matrix. Hence

0.1 < = (10: 1 + [o- 5] + 5 5110-1)
< Cre + %lBIek%Q}.

Recall that
|Ble < 1

was assumed in the statement of Theorem 8.2.1, so

310.01 < (1- 318k ) 10,01 < Cre,

and hence

|Q(x,p) — Qy, p)| < Crelr —y|.
Next by (8.55) we have

Q(.p) — QUvw)l = | (p+ B +eBM L o(p) + v(QUe.p))])
—(w+eE+aBM%@@0+mQume‘
< Ip = wl +¢lBI3 (10(p) = v(w)| + (@) ~ (@, w)))
< Ip=wl+ 51Ble (p — wl + 1Q(w,p) ~ Qo w)).
Again using the assumption that ¢|B| < 1, we have

(1+ 31Ble) Ip — w|
1Q(z, p) — Qlz, w)| < 12_ L1Ble

< (1 + 2|Bje)lp — wl,

which completes the proof of Lemma 8.4.1.

LEMMA 8.4.2 For all (z,p) € R3

1Q(z,p) ~ Q(x,p)] < 26(|E ~ E| +|B = B)|n+1,2)-
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Proof. By (8.55) and (8.56)
1Q(@.5) ~ Qo p)l = [fp + €+ eBM (000 + QD] = [p + B+ eBM L(o(p) + (@)
< e{E - Bl + 5¢|1B - Bllv(o)] + |BIv(@ - v(Q)) + 1B - Bllu(Q)I]
<e(E - By +|B - BY + ZelBllQ - Q).
Again since €|B| < 1 we have
1 ~ 1 ~
;0= < (1-3481) 10~ 4
<e(|E - E|+|B - B)),
and the lemma follows.
LeEMMA 8.4.3 Forallae A
17| < Cre?,
where T, is defined in (8.57).
Proof. Let o € A. Tt follows from Taylor’s theorem that

(8.60) lp(tn+3/2, 0,Ce) — P(tn+1/2,0,Ce) — s%?(tnﬂ ,0,C%)

3
< -ed max{lg——?—(r, 0,C)|: 7€ [t"+1/2,t"+3/2]}

S

We put
V(t) = v(P(t,0,C*));

then we also have

l%[y(th/Z) 4 V(In+3/2)] — V(tn+1)‘

1 dzv
. < g2 ol : n+1/2 n+3/2
(8.61) < 3¢ max{lah_2 (7')' TEt ,t ]}
< Cre?
Now since
dP

E—;(t"“,O,C‘“) = E + BMu(P(tn+1,0,C))
(where E = E(t"+1, X(tn+1,0,C)) etc.), (8.60) and (8.61) yield
P(t"+3/2,0,Cc%) - [P(t"“ﬂ, 0,C%) + E(E + BM%[V(t"“/?) + V(t"+3/2)])] |

(8.62) < Cre® +

EBM(%[V(t”+1/2) + v(tn+3/2)] _ v(tn+1)) '

_<_ CTES.
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Let us abbreviate
Q = Q(X(t"+1,0, Ca)? ’P(tn+1/2’ 07 ch))’

so that by (8.57)
'];7 — 'p(tn+3/2,0, Ca) _ Q

Now by (8.62) and (8.55)
Tl < Cred + [P(m+1/2,0,C2) + ¢ (E + 5 BM(+1/2) V(t"+3/2)}) ~q|
~ Cred + %EIBM(V(W/?) (@)
= Ored + el Bl[o(P(t749/2,0,0%) ~ (@)
< Cred + %8|B!’P(t"+3/2,0, Co) — QI

1
= Cre? + _¢|B||T, .

Again since ¢|B| < 1 we have

1 1
LT < (1 - 55131) IT,] < Cred,

from which the lemma follows.
Returning to (8.59), we use Lemmas 8.4.1-8.4.3 and obtain
"p(tn+3/'2’ 0, Ca) _ ’f)a(tn+3/2)|
< Cre|X(t2+1,0,0) — Re(enh)|
(L4 2B(en+t, R (en 1) fe) [P(£+1/2,0,C) - Pe(tnt1/2)|

+2¢(I(B = E)en+)llg + (B = B)(E+) 1= ) + Cre®,
Using |B(t,z)| < C for all t, z and the corollary to Lemma 8.3.3, we have

|P(tn+3/2,0,C) — Pa(tn+3/2)] < Cre|X(t+1,0,C%) — X (tn+l)]
(8.63) + (14 Ce)[P(t+1/2,0,C%) — Pa(tn+1/2)|
+ Cre(e? + e~ 1A2 + [1 + Stn+1)2E(tn+1)).

8.5. Summing the Errors

Estimates (8.54) and (8.63) bound the errors at ¢ = t»*+! and t = ¢"+3/2 in
terms of errors that occurred earlier. Unfortunately, the bound on the field
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errors required estimates of errors at all times (see (8.20) and Lemma 8.3.1),
not just at t1,¢3/2 42 45/2 etc. Thus we define

£m = max { max{|X(7,0,0%) — Xo(1)]: a € A, T € {t°,1,12,...} n[0,t"]},

max{|P(7,0,C) — Pa(r)|: a € A, T € {t1/2,43/2,45/2 . }n [O,tm]}}

for m =0, é,l, 5,.... Note that
£0 = £1/2 =0,
Now for every a € Aand m € {1,3,2,...},

|X(t,0,C2) — X(tm,0,0%)| + |P(t,0,C%) — P(t™,0,C=)| < Cre
for each ¢ € [tm—1,¢™], so that
(8.64) E(tm) < €™ + Cre.
By (8.54) we have
|X(En+1,0,Ca) — Xea(tnt1)| < (14 )En+l/2 4 Cred,
and using (8.64) in (8.63) we have

|P(tn+3/2,0,C*) — ﬁa(tms/z)‘
< Cre€ntl 4 (1 4 Ce)én+1/2
+ CTE({:‘2 +e-1A2 + 1 + g(tn+1)]2[gn+1 + CTE])
< (14 CrlL+ S(tnen)j2e ) Ent + Or (1 + (em+))2e2 + A2)
foralla € Aand n € {0,1,2,3,...}. It follows from the definition of Em that
(8.65)  E£m+1/2 < (14 Cr[l + S(t™)]2e)Em + Cr([1 + S(t™)]2e2 + A?)

forallme{O,é,l,g, . } Letmr:{% g }be given and let

~ 1
A= max{C’T[l + S(tk)]2 k€ {O 5,1,...,171}}
and

Az = max {CT([I +5(tF)Pe + A?) ke {o, % ... m}} .
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Then by (8.65)
Em < (14 Ar1g)€m=—1/2 4 A,
< (14 A1)26m-1 4 [(1 4 Ase) + 1] Az

<
<

(1+ A1)2mE0 + [(1+ Arg)2m=1 + .- + ] Ag

_ (1+ Ae)?m -1
- ( A1€ A2

2m
< (1 4 2mA1€) AgE“lAfl
2m

< exp(2mAie) Aze 1 AT
= exp(24;t™) Age -1 AT L.

Substituting the above values for A; and A, we get

Em < exp (CT[I + sup S'(tk)P)(e +e-1A2).

k<m

Hence by (8.64)

E(tm) < exp (Cr[L+ sup S(t4)]2) (e + £71A2),

k<m

and since £ is nondecreasing we have

(8.66) &(t) < exp (CT[I +sup S(T)p) (€ +e-1A2).

<t

We comment that if £0 and £1/2 werc not zero, then (proceeding as above)

(8.66) would be

E(t) < exp (CT(I + sup 5(7’)]2)(5 L e-1AZ 4 £0 4 £1/2),

<t
Thus (8.66) still holds if
E0 4+ £1/2 < Cle +e-1A2).
Next we use (8.66) to estimate S(t). Note that for all a € 4 and 7 < ¢

< [Pe(r) = P(r,0,C)| + [P(r,0,C)|
< E(1) + 8(7)
<

so that ) )
sup S(7) < Cr + &(t).

<t
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Define
Tea=sup{t: E(r) <1 forall 7€][0,¢t}.
Then
(8.67) sup S(1) < Cr
T<t
for t <T < T, A. Hence
(8.68) E(t) < Cr(e +e-1A2)

for t <T < T: A. But since

lim Cr(e+e-1A%) =0,
e—=0"
A<LCye

it follows from (8.68) and the definition of T A that

lim TE‘A = +OO.
e—0
A(ClE

Finally the validity of the main theorem 8.2.1 follows from (8.67), (8.68)
and the corollary to Lemma 8.3.3.

We conclude with two comments regarding this scheme and related finite
difference schemes. We note that Theorem 8.2.1 provides no approximations
for the density p. To this date we have been unsuccessful in attempts to derive
such estimates. Secondly, in {1] finite differences are used to advance the fields
in time., This is natural since the fields satisfy linear ordinary differential
equations along the characteristics. However, we have been unable to prove
that such schemes converge. The scheme employed in this chapter uses the
exact solution representation, applied to approximate sources. This introduces
one extra order of smoothing, and allows us to close the loop of estimates.

For another approximation (which is related to the Darwin model), see [10]
and [11].
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