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Preface

This book stems from lecture notes for a course in Kinetic Theory I gave
at Indiana University in the spring of 1993. The class was composed of several
of my colleagues from the faculty and advanced graduate students, most of
whom were writing theses in partial differential equations. My goal was to
introduce them to the study of the Cauchy problem for the Boltzmann and
Vlasov equations.

The desired results on both equations are scattered throughout the liter-
ature. Thus one of the purposes of this book is to collect such results in one
place. When these notes first appeared (May 1993) there were no similar texts
available. Since that time, the excellent reference [4] on the Boltzmann equa-
tion has been published. One finds in the literature that the starting point
for many studies (e.g., solutions near the equilibrium) assumes the reader is
familiar with a large amount of background material. For instance, the work
of Grad [13] on the linearized Boltzmann problem is a "given'' in many papers.
We have tried to fill in these gaps and unify the presentation.

We claim no attempt at complete generality here. Thus, for instance, when
studying the Boltzmann problem, we treat the "hard-sphere" case whenever
convenient. In the chapter on small-data solvability for the Vlasov-Maxwell
system, we assume that each of the plasma densities is initially small, although
there is a significant generalization [9] to the "nearly neutral" case in which
cancellation is taken into account.

We begin in Chapter 1 with a study of the collision operator and "crude"
derivations of the equations to be considered. All such equations start with
the Liouville equation. Related material on conservation laws and the entropy
is also presented in this introductory chapter.

Chapter 2 deals with solvability near the vacuum for the Boltzmann equa-
tion. It is an adaptation of the works of Illner and Shinbrot [15] and Polewczak
[21]. This concerns the hard-sphere case; global solutions are obtained for
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"small" Cauchy data (near 0).
In the following chapter we study the solvability of the Boltzmann equa-

tion for Cauchy data near the equilibrium. In order to unify the treatment,
we include here Grad's computation [13] of the integral operator for the lin-
earized equation. One begins by linearizing about a homogeneous equilibrium
a Maxwellian distribution of velocities. Then we follow the recent paper of
Kawashima [16]; this is self-contained and elegant. I felt it would be less time
consuming to develop Kawashima's ideas than to refer to the original works of
Ukai [23]. [24], [25], Nishida and Imai [19] and Ellis and Pinsky [7], It is shown
that Cauchy data sufficiently near a Maxwellian launches a global solution to
the full nonlinear Boltzmann equation.

In the following chapters we switch to the study of collisionless plasmas
and Vlasov problems. In Chapter 4 we consider the Vlasov-Poisson system.
This has been recently solved globally in time for large data by Pfaffelmoser
[20]. Simpler proofs have since been given by Schaeffer [22], Horst [14], Lions
and Perthame [18] and Wollman [26]. An unpublished variation of the proof of
Schaeffer [22] is presented, which was kindly communicated to me by Schaeffer.

We then turn in Chapter 5 to the Vlasov Maxwell system. Here, as for the
Vlasov-Poisson equation, a sufficient condition for global classical solvability
is known: that one be able to control the influence of large velocities. This
appears in [11]. However, at this point such a bound has been constructed
only for "small'' or "nearly neutral'' data. Global solutions to the small-data
Cauchy problem are then obtained in Chapter 6. This material is taken from
[12].

The next chapter concerns the smoothing property of velocity averages and
global weak solutions to the Vlasov-Maxwell system. This is based on work of
DiPerna and Lions [6] as modified by Kruse [17].

In the last chapter we present a particle method for the numerical approx-
imation of the "one and one half dimensional" relativistic Vlasov-Maxwell
system. Here the phase space density / is a function of the time t, one space
variable x and two velocity variables ui, 112', this is the "smallest"' system for
which one has a nontrivial magnetic field. We use a special algorithm from
[10]; it is noteworthy that finite differences are not used to advance the fields
in time. We obtain essentially first -order convergence.

There are many omissions. In particular, we omit the study of "soft" po-
tentials in the near equilibrium solution of the Boltzmann problem (see e.g.,
[2]). The initial -value problem for the spatially homogeneous Boltzmann prob-
lem is not considered. For this and related perturbative results for "weakly
inhornogeneous" problems, see [1] and [4]. The Enskog equation is not dis-
cussed at all, nor are boundary value problems of any type. The elegant proof
of global existence and regularity for the Vlasov Poisson system, due to Lions
and Perthame [18], is also omitted. Many advances have recently been made in
the study of stability of stationary solutions for Vlasov problems; we refer the
reader to the references in later chapters. Also, we do not include a treatment
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of weak solvability of the Boltzmann problem. This can be found in [5], [8] and
[4]. However, the essential compactness used there is contained in our Chapter
7.

Surely a project of this magnitude is likely to contain errors. I plan to post
a list of errata which may be obtained via anonymous ftp at

iii-math. math, indiana.edu

in the directory pub/glassey. One might also check the URL

http://www.math.indiana.edu/

in the future for further information.

I wish to thank my class for a stimulating experience. Its members included
Mark Daniel, Xiaoqiu Gao, Sang-woo Heo, Chi Shun Kwong, Raymond Lai,
Gheorge Minea, Hongjie Ni, Ricardo Rosa, Xiaoming Wang, Kang Xue and
Mei-Qin Zhan. I am also grateful for comments from my colleagues David
Hoff, Mohammed Khodja, Shouhong Wang and Kevin Zumbrun.

I wish to specially acknowledge the contributions of my friends and coau-
thors Walter Strauss of Brown University and Jack Schaeffer of Carnegie Mel-
lon University. I am indebted to H. Andreasson, R. Illner and B. Perthame for
constructive comments and to J. Batt for introducing me to Vlasov problems
in 1975. I thank Ms. Vicki Botos and Ms. Mary Jane Wilcox for expertly ren-
dering parts of a (poorly) handwritten manuscript into T^X form. Finally my
family deserves recognition for their patience and understanding in allowing
me to complete this project.
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Chapter 1

Properties of the
Collision Operator

1.1. Kinetic Theory, Derivation of the Equations

By "kinetic theory" we understand a mathematical model in which a gas
is represented as a collection of molecules whose motion in "phase space"
is to be analyzed. Phase space is the Cartesian product of three dimen-
sional position space with three dimensional velocity space. We use a sta-
tistical approach and posit the existence of a "velocity distribution function"
/ = f ( t . x. r) where t > 0; x. v € R3. Here / > 0, / -> 0, \v\ -» oo and the
probable number of molecules which, at time t, are situated in a volume ele-
ment x. x+dx having velocities in v. v+dv, is /(t, x, v) dv dx. The distribution
function / contains an immense amount of information, so one can then use
/ to calculate macroscopic properties. Standard references on kinetic theory
include [9], [11], [16], [17], [22], and [31]. For other mathematical treatments
of the Boltzmann equation, see [10] and [32].

The areas we will study include:

1. Rarefied Gases (Boltzmann equation (1872), [7])

The assumptions are:

(i) the gas is electrically neutral;
(ii) the mean distance between molecules is large in comparison to their

size; i.e.. in comparison to the range of intermolecular forces;
(iii) encounters with other molecules form a very small part of the lifetime

of a molecule: therefore only binary collisions are important;
(iv) collisions preserve mass, momentum and energy.

2. Plasmas (completely ionized gases)

There are essentially two theories: Vlasov (collisionless) and MHD (mag-
netohydrodynamics). Their properties may be summarized in the following
table:

1



THE CAUCHY PROBLEM IN KINETIC THEORY

time scale
temperature

density
collisions

VLASOV
rapid
high
low

ignored

MED
slow
low
high

very important

Table 1.1.Physical Characteristics of Vlasov vs MHD Plasmas

Here "slow" means the fluid motion is slow with respect to the thermal motion
of molecules; "high temperature" means T 3> e2/r where

—e — charge of an electron

T = temperature

f = mean distance between molecules, etc.

As examples we list for MHD fusion reactors and stars, while typical Vlasov
plasmas include the Van Allen radiation belts, nebulae, the solar wind and
(one of the two) tails of a comet.

All equations stem from the Liouville equation:

If we call (x, v) the velocity in phase space then by Newton's equations of
motion

(1.3) 
± = velocity = v

v — force = F

and the Liouville equation can be written as

or

1.1.1. "Derivation" of the Vlasov-Maxwell System. We ignore colli-
sions: C(f) = 0. Plasma dynamics are electromagnetic in nature; hence we

Thus

2



PROPERTIES OF THE COLLISION OPERATOR 3

couple the Maxwell system to the Liouville equation. Let c denote the speed
of light. From the study of electricity and magnetism, we have

Then the Vlasov equation (1946) is

Maxwell's equations are

Here j is called the current density, p is the charge density. Both will be
specified below. In order to see the coupling, we recall that the constraint on
the divergence of E is preserved in time provided that

Indeed, formally we have

Similarly, the field B remains divergence free if it is so initially. Now integrate
the Ylasov equation (1.6) with respect to v: i f / vanishes with sufficient rapidity
at DC. we get

because

In view of (1.7), this suggests that we take
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Actually we take 2 species: electrons, with density f e , and ions, with density
fi with the electron charge eqnal to —e, and the ion charge equal to ze (here
2 € N). Then the Vlasov equation takes the form

and in the Maxwell equations we take

1.1.2. A formal "derivation" of the Boltzmann Equation. Let the
mass be normalized to unity. Consider a two particle collision, with one particle
having values of velocities in a range dv. the other with values of velocities in a
range du. In a collision, these acquire values of velocities in the ranges dv'. du'
respectively.

Fig. 1.1 Collisions

Collisions conserve momentum

and energy

Now the total number of collisions per unit time per unit volume is taken to
be



Here w is determined from analytical mechanics by solving the collision prob-
lem assuming a given intermolecular force. It is also conventional to abbrevi-
ate f ( t . . r . u) by f ( u ) , etc. From [31] one learns that Maxwell himself assumed
that the probability density for a pair of molecules with velocities v, u at (t,x)
is proportional to the product f(t,x,u)f(t,x,v). This hypothesis is called
"molecular chaos" and is recognized to be that of stochastic independence.

Symmetry for w is achieved via the "Principle of detailed balancing" which
asserts that

This is formally discussed in the physics books in the references. Suffice it
to say the following. In equilibrium, the number of collisions (u,v) i-> (u',v'}
is equal to the number of collisions (—u', —v') H-» (—u, —v). This follows from
symmetry of the equations of classical mechanics under time reversal, and is
adopted in nonequilibrium settings also. Thus under such a mapping we expect
to get

and then the stated result.

1.2. The Form of the Collision Operator

Let two molecules collide. Every such collision transfers it out of a particular
range dv (losses). Given dv. the total number of collisions (u, v) •—> (u',v')
with all possible values of u,u',v' occurring in the volume dx per unit time is

There are also gains: collisions which bring into the range dv molecules which
originally had values outside that range. Given v. these are collisions (u', v') i—>
(u,v) with all possible u,u',v', and

PROPERTIES OF THE COLLISION OPERATOR

One takes p proportional to

Thus the

5



Therefore by (1.15)

6 THE CAUCHY PROBLEM IN KINETIC THEORY

Note that x is unchanged in C(f).
For a monatomic gas, we write

expressing conservation of momentum and energy. Assume these have been
removed. Then da = scattering cross section. One usually writes this as
da — q(uj. \u — v\) dw (u; 6 52) so that

which is called the differential collision cross section, da contains 6 functions

Now we obtain the explicit form of u', v'. The conservation laws impose
four constraints on the six variables u', v'. Thus there are two degrees of
freedom. We write

where a is a scalar function and |u;| = 1. Then momentum is automatically
conserved. Next we force energy conservation as in (1.14):

Therefore

and hence, as long as a ̂  0,
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1.2.1. Special Cases of q.

(i) For the hard sphere:

where 60 is related to the size of the ball, u> • (v - u) = \v — u\cosQ and
0 < 6 < 7T/2.

(ii) For the inverse power law:

where

1.3. The Hard Sphere Case

Now we consider in some detail the hard sphere case. Write

Write d\ = {jfldpdu — //2d/usin# dOdfi with the polar axis along v — u so that
\fi\ < \v — u\ and

Denote by A the argument of the delta function above in (1.26). Then

Now we use the identity from Lemma 1.3.1 below:

where the constant is related to the size of the spheres. Thus C(f) can be
expressed via the formula

Set X = v — v' so that
(1.26)



Fig. 1.2 Geometry of Hard Sphere. Collisions

The <5(//)- term gives 0 contribution because of the presence of the factor
/i2d/i. The second term gives the contribution

Then in the integrand of (1.26)

and therefore

is the expression for C(f) in the hard sphere case.
Now we establish the lemma used above.

LEMMA 1.3.1 For a ^ b, <A e £> = Cg°(R),

THE CAUCHY PROBLEM IN KINETIC THEORY8

Thus
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Proof. Let d£ -» 6 in V with Se € Ll. Then

Partition this integral as

where

Without loss of generality we may assume that a < b. Set

Then y is monotone for such x and y > 0 if a: < a; y < 0 i f a < x < s^, and
rfy = [2x — (a + b)} dx. Solving for x. we get

We have taken the minus sign because y is decreasing on x < 9^. Similarly,

1.4. Conservation Laws and the Entropy
Write

9



We will show below that the absolute value of the Jacobian determinant | J\ is
unity. Moreover. \u — v\2 = 2|u|2 + 2\v\2 — \u4-v\2 = \u' — r'|2 so q is invariant.

By definition, v' — v — (w • (v — u))w; u' = u + («; - (t< - u))u;. Therefore
u' — u' = v — u — 2(w • (v — u))u and thus

Define a related quadratic form as

10 THE CAUCHY PROBLEM IN KINETIC THEORY

Then Q* is symmetric and Q*(f,f) - Q(/./).

LEMMA 1.4.1 For all smooth functions f ( v ) , g ( v ) . 0(v). small at infinity,

Proof. The first equation is the definition. Switch u, v: q is invariant since
q = q(ui. lu — v\), and

Therefore the second equation is true.
Now in the first equation change variables (u,u) >—> (u'.v'}:

We can invert these to get
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Now rename (u',t>') to (u, v) to get

which is the third equation. For the last equation, switch u, v in the third
equation; again u' —> v', v' —» u' as above. This proves the Lemma.

Now take g = / in Lemma 1.4.1 and add the four choices to get

Therefore

Such o's are called collisional (summational) invariants. In particular, we
can take

COROLLARY 1 .- / Q(f, /) dv = / VjQ(f, /) dv = / |u|2Q(/, f)dv = 0
for j = 1.2. 3.

Hence for a solution / to the (BE), suitably small at oo, we have formally

For this we simply choose </> as above and multiply the (BE) by 0(v): <t>(v)ft +
<t>(v)v • Vxf - <t>(v}Q(f,f) and integrate.
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Next, we assert the Claim: for / of restricted growth, J Q(f, f)4>(v) dv = 0 if
and only if there exist o € M, c < 0 and b e R3 such that </>(u) = a + b-v + c\v\2.
We will give the proof later. Hence, the only collisional invariants are as above.
In [31] this result is called the "Boltzmann-Gronwall Theorem."

COROLLARY 2 : (Entropy; the H-Theorem) Assume q > 0, / > 0. Then

Proof. Add the four choices in Lemma 1.4.1 and let 0 = 1 + In /:

where

for / > 0. Therefore

as desired.

The expression — /In / is the entropy density.

1.5. Relevance of the Maxwellian

Now suppose that /Q(/, /) • In f dv — Q. Since the integrand is of one sign,
we have



PROPERTIES OF THE COLLISION OPERATOR 13

Thus if / is positive and continuous

Hence

and thus / is a Gaussian: f ( v ) — exp(a + b • v -f c v\2) (c < 0).
Here is a variational interpretation. Since ff fin f dvdx decreases in t,

and

are constants, the system should tend to

subject to the 3 constraints. Use a. b, c as Lagrange multipliers and compute
the Euler equation for the functional in (1.47). The result is

or

Let

Again / is a Gaussian.

A direct lower bound may be achieved if the problem is restricted to a
bounded domain in position space. Let B C R3 be a bounded set, say a cube,
and consider periodic boundary conditions. Assume that

Define
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Thus

Further, define

It is easy to establish the following Claim:
For all s > 0 and all so > 0, there exists a point £ between them such that

Indeed by Taylor's Theorem we have

Now min {s, SQ} < £ < max {s, SQ} so clearly £ < s + so- This proves the claim.

Moreover, we see that this inequality remains true for s = 0, so > 0.
Applying the claim, we have

Hence

Integrating over B x R3 we get

We thus have the following result: Let

Then the functional I\[f] is minimized when / is the Gaussian n\ as above,
normalized by the constant c\.
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The above lower bound on /A[/] leads to the following simple L1 estimate
on the difference f — n\:

Now add the fourth column to the first column, add the fifth column to the
second column, and add the sixth column to the third column. Then

Tims we have L1 stability provided existence can be established in the ap-
propriate sense. The above exposition of this well known result is due to J.
Schaeffer.

1.6. The Jacobian determinant

LEMMA 1.6.1 The. Jacobian matrix J satisfies

Next subtract the first row from the fourth row, subtract the second row from
the fifth row. and subtract the third row from the sixth row. There results

where 6, = aUj - aVj. Thus | J\ — det (&_,• + u>jbj) which is now a 3 x 3 matrix
computation. We compute bj = au — av = — 2uj so that

Proof. Write

Write J in 3 x 3 blocks:
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After a simple calculation, we get |J| = — 1.

1.7. The Structure of Collision Invariants

LEMMA 1.7.1 Let x € M™. Let f be continuous at one point XQ and satisfy

Then /(x) = £ • x for some constant £ € R".

Proof. We claim that / is homogeneous of degree one:

Indeed, assume this temporarily and consider any orthonormal basis {e/c}fc=1

for Kn. Let x € Kn. Then

as desired.
It remains to establish (1.57). / is everywhere continuous by

Next, for p 6 N, /(£?=i *,-) = ELi /(*<)• We take x> = x for a11 * to get
f ( p x ) = p f ( x ) . Now we put p —» q e N.x —* ~x : f ( x ) = q f ( ~ ) . or

and hence

and thus for all x € Mn, a 6 E, a > 0. By hypothesis, /(O) = 0 and /(-x) =
—/(x). Hence

LEMMA 1.7.2 Let g be continuous and satisfy



PROPERTIES OF THE COLLISION OPERATOR 17

Then there exist constants a, c 6 K and a constant vector b e R3 such that

Proof. This is basically the proof from [9]. By hypothesis,

for some function F. Define

From above, g(—u) + g(—v) — F(\u\2 + |i;|2, —u — v). Hence

Clearly we have g±( — r) = ±g±(v). etc.
Put u = -v in (1.64):

so < 7 + ( r ) depends only on |?'|2. Write g+(v) — C ( I H 2 ) - From (1.64) then. F+
depends only on u\2 + \v\2 (see the observation below), and hence

 for some constant
c. Thus

as desired.
For the function g_ we have

Thus



18 THE CAUCHY PROBLEM IN KINETIC THEORY

First we take u perpendicular to v; then \u + v\2 — \u\2 + |u|2 so F- depends
on the second argument only. We can write

Set u = 0:

or

so that

Therefore we are done if u is perpendicular to v.
To avoid this extra hypothesis: let u, v be arbitrary, choose a vector p such

that

By the above considerations,

The sign in the second expression is chosen as follows: we take the minus sign
if u • v > 0, the plus sign if u • v < 0.

Now

by this choice of sign. Therefore

By using (1.73) on the left-hand side, we get

If u • v > 0, we take the minus sign: g-(v) + g ~ ( u ) = g~(u + v). Put u = v :
2g-(v) = g-(2v). Hence
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Put this in (1.76) using the bottom sign:
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so that

Above we used the following observation: in order to deduce (1.67) from
(1.64), we show that no non-constant function of u + v can be constructed
from the arguments |w|2 and \v\2. For, suppose that

Thus /(u + r) = h(\u + i'|2) implies

When u • v — 0 and |u|2 = t\v 2 we have

the left-hand side = /i((l + t ) \ v \ 2 ) ;

the right-hand side = g(\v\'2,t\v 2).

However, when u = f 1 / 2 i ' ,

the left-hand side 

the right-hand side

So for these two different choices of arguments, the right-hand sides are equal,
but the left-hand sides are not. Hence h must be constant.

The case in which the function g is merely measurable can be found in [10].

Therefore

Put u = 0:

hence
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1.8. Relationship of the Boltzmann Equation to the Equations of
Fluids
Suppose / = /(£, x, v) is a solution to the (BE). Consider the following "trans
lation table" in which we abbreviate j k — Jk(t,x) — Vk'.

Expression Name

p(t,x)

J(t,x)

pJ(t,x)

Pik(t,x)

e(t,x)

qk(t,x)

Description

density in physical space

mass velocity

momentum density

stress tensor

energy density

internal energy

heat flux vector

Table 1.2.Relationship to Fluids

The pressure p corresponds to | ]T\ p(i. so p •= |pe. The equation p = |p
is the equation of state. For a monatomic perfect gas. e = e(T). T =
temperature. Thus by the above, ^ is constant at constant temperatures. A
perfect gas is given by p = pRT (R — constant).

Now we use the Boltzmann conservation laws to get the fluid equations.
The Boltzmann equation (BE) is

Recall that fQdv = f VjQdv = f \v\tQdv = 0 (j = 1.2,3).
Multiply the (BE) by 1 and integrate with respect to v:

Multiply the (BE) by Vj (j = 1,2.3) and integrate:

Now f v j f d v = pJj by definition and

or
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Thus

Multiply the (BE) by \v\2 and integrate:

Now

21

Therefore

Hence

Now to compute f \v\2i>if dv, write
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Thus

The five equations (1.86), (1.89) and (1.95) are the five basic equations of
continuum mechanics. These five equations have more than five unknowns. In-
deed, p, e are two unknown scalars, while q, J are three vectors, which provide
six unknowns. Finally, since p is a 3 x 3 symmetric matrix, we have an addi-
tional six unknowns, for a total of 14. However the known relation ]T^ pu = 2pe
leaves us with 13 unknowns. The "magic" integer 13 will arise again in the
near -equilibrium study of the Cauchy problem in Chapter 3. We quote from
[31]: "The entire purpose of kinetic theory is to relate the 13 scalar fields . . . to
various circumstances of the kinetic gas." To make these consistent, we need
to impose "constitutive equations" to relate Pij.qi to p, Ji,e.

1.8.1. Examples. As particular famous examples, we cite the following:

1. The Euler Equations (ideal fluids)

Take p ( t , x) to be a scalar- valued function, and

Then the classical Euler equations result.

2. The Navier Stokes Equations (viscous fluids)

Let p(t,x) be as above and denote by ju. A certain viscosity coefficients.
One takes

Then the classical Navier Stokes equations result.
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Chapter 2

The Boltzmann Equation
near the Vacuum

2.1. Invariance of \x — tv\2 4- \x ~ tu\2

The goal in this chapter is to prove global existence to the Cauchy Problem
for small (near vacuum) data in the hard sphere case. We follow [15] and [12];
see also [3]. For the density / = f(t,x,v), t > 0; x, v € K3, we write the
Boltzmann equation (BE) as

where

Here

constant proportional to the area of the spheres

a measure of the mean free path

u' + v' = u + v (momentum conservation)

\u'\2 + |w'|2 = \u\2 + jz;|2 (energy conservation).

Write Q f ( f , f )  =  f R ( f )  w h e r e

Appropriate spaces for solution are as follows. Given (3 > 0, let

there exists c> 0 such that

25
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with norm

We also define

X = < / : / is measurable and there exists c > 0 such that

with the same norm. We name the weight function:

This stringent decay (which will be imposed on the initial data) greatly sim-
plifies the argument but can be considerably weakened: see [15]. [3].

We introduce the notation

Then the (BE) can be written as

(2.4)

It is the time integrated form of (2.4) to which we will find a continuous
bounded nonnegative solution in this chapter.

Before presenting the details, we offer the following argument (due to Bar-
dos. Degond and Golse [1]) which simply exposes the algebraic device upon
which the proof rests. Given a bounded scattering kernel q, we introduce in
the equation
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the change of variables / = [iF, where p, = e~\x~tv\ . Thus

and

or

where as before we abbreviate F(u) = F(t, x, u), etc. Now note that

Therefore

Since 0 < q is bounded, we have for the right-side in (2.9) the upper bound

(we are ignoring the possible singularity in the u-integral in (2.10) at t — 0).
Under these conditions we have, with FO denoting data terms,

We set

Then

The inequality in (2.13) implies a bound on j)-F(i)|J provided that either CQ or
ci is sufficiently small. In order to see this, define
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Fig. 2.1 Small-data Convexity

Notice that $ is strictly convex. Assume that $ has a negative minimum, as
shown in Fig. 2.1. By (2.13), we will have either 0 < F < r0 or else F > r\.
By continuity, only the former case 0 < F < ro will prevail if this inequality
holds initially. In order to confirm this we compute directly

so that

for Co (or c\} small enough.
Turning to the proof of the major result, we begin with a calculus lemma.

LEMMA 2.1.1 Let I = 

Proof.

With s — \v — U\T we have

Write i] = ip_^| so that \TJ\ = 1. In the exponent here we have
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Thus

29

as desired.

Next, we estimate the two parts of the collision operator, and show that
the norm on M is "reproducing".

LEMMA 2.1.2 For any t > 0 and f# e M we have with a constant c
independent of t

More generally, abbreviate q = u> • (v — u) and, for f f , ff € M, t > 0, define
Qf(h, h) and Qf (/i, /2) as functions of (t, x, v) by

Then

Proof. By definition

Thus
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The r-integral we recognize as /, and thus from Lemma 2.1.1

which is the desired estimate for the loss term. For the gain term, again with
q — (jj • (v — u), we have

Denote by P the argument of the exponential function in the last line of (2.18).
Then using the previous observation (essentially (2.8)) and the conservation
laws in (2.2), we get

Now, using Lemma 2.1.1 and the conservation of energy, we find

which is the desired estimate for the gain term. The second part of this lemma
is established in exactly the same manner.

Write f(0,x, v) — fo(x, v}. Returning to (2.4). we integrate in time to get
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Define the operator T on M by

and let

LEMMA 2.1.3 There exists a constant RQ such that z/||/o|| andaft^Ro are
sufficiently small, then the equation (2.20) has a unique solution /# € MRO.
Moreover, under the same restrictions on /o and RQ, this equation is uniquely
solvable in X as well.

Proof. The estimates of Lemma 2.1.2 show that if e.g., ||/0|| < R/2 and
/# € A/R, then

Thus T maps MR into itself for R sufficiently small. Explicitly, we require
that 2 • 7r3/?~2(TjR < 1/2. Similarly, we show that f is a contraction on MR for
suitably small R. Since elements of MR are continuous, the continuity of .F/#
is evident.

2.2. Sequences of Approximate Solutions

It remains to show that the solution just obtained in the first part of Lemma
2.1.3 remains nonnegative. For this purpose we use the iteration of [13] and
[12] as follows. Let T > 0 be arbitrary and let MT denote the restriction of
elements / 6 M to [0, T] x M3 x R3. Suppose that there exist u*, I* £ M
such that £0(t,x..v) < u0(t,x,v) for all 0 < t < T, ( x , v ) € M3 x K3.

Define two sequences {(k}~ {"fe} by

Because we have assumed that u$ 6 M, the estimates of Lemma 2.1.2 allow
us to conclude that

Clearly there exists a solution when k = 0. These are linear ordinary differen-
tial equations; thus if ̂ .-i, u^-i exist on (0,7") then so do 4, «fc.

LEMMA 2.2.1 Let 0 < /o e M. Assume the beginning condition (BC)
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Then the system (2.21) has a unique solution

for all k > 1 with the property

Temporarily we assume that the (BC) and the result of the lemma hold
with some u* € A/T- Then there exist functions t, u with (k /* £, tifc \ ?/. and
t(i) < u(t] for all t. Now integrate over [0,t] the ordinary differential equations
(2.21) at step fc; let, k —» oo and apply the dominated convergence theorem to
get

This is the separated Boltzmann system. If we can show that u = (., then
/ = u = f. will be a nonnegative "mild" solution of the Boltzmann equation
(2.1).

Proof of Lemma 2.2.1. In order to see the monotonicity, we solve explicitly
to get

Thus

Assume that for some k > I

and subtract (2.27) from (2.28):



THE BOLTZMANN EQUATION NEAR THE VACUUM 33

The hard sphere kernel is nonnegativo on the set of integration, and from def-
inition (2.3), R(u) < R(v) if u < v a.e. So the first two terms are nonnegative.
By the induction assumption, the last term is too, since Qg is monotone. Hence

and a similar argument applies to the {uf (£)}. We see that each member
ii if

of { f ^ } , {u^ ) is nonnegative and belongs to Air by using the estimates of
Lemma 2.1.2. This proves the Lemma.

In order to simplify the (BC). we take IQ = 0 and any 0 < ujf e MT- We
claim that

Indeed, by the differential equations,

Now

Therefore

Hence the (BC) reduces to

2.3. Satisfaction of the Beginning Condition

Write

Since 0 < /0 € M.

LEMMA 2.3.1 //
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are sufficiently small, then the (BC) holds, and the separated Boltzmann system
has a global solution ( £ , u ) with (£#,w,#) £ MR.

Proof. Since ^o = 0,

i.e., with q = uj • (v — u),

We will look for UQ in the form

Thus the (BC) holds if

Set

i.e..

Then

We have used (2.19) in the last step. Now we multiply (2.42) by e3\Tf. Thus
the (BC) holds if

We want a nonnegative solution w of (2.46). Using Lemma 2.1.1. we see that
a sufficient condition for (2.46) to hold is
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To prove the existence of a solution w > 0 to (2.47) consider the space

with norm

Consider the operator T defined on G by

where

We claim that T maps a sufficiently small ball in G into itself. Indeed, let
w > 0. Then since 0 < /0 G M, T ( w ) ( v ) > 0 and

Thus for such IT

Similarly, for 0 < w\, w-2 6 G.

Thus T maps nonnegative functions in the ball of radius RQ in G into itself,
and is a contraction there, if ||/o|| and <r/?~2/?o are sufficiently small.

Since T is a contraction there we may write w = limn-+ocTn(w). We
may take T°(w} = fa- Since /o > 0 by hypothesis, the solution to (2.47) is
nonnegative. We have thus found the "starting" function MO-

2.4. Proof that u = t
It remains to show that u — t. Take R from Lemma 2.3.1.

LEMMA 2.4.1 When ||/o|| and ad~2R, are, sufficiently small, u = ( where
it.( are the solutions of the separated Boltzmann system (2.26).

Proof. By definition.
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Subtracting these equations, we have

Now we simply take norms in M, using the estimates from the second part of
Lemma 2.1.2:

Now u#, l# both lie in MR, so each of the factors ||u*||, ||£#|| is bounded by
cR. The conclusion now follows when the product afi^R is sufficiently small.

As in Lemma 2.4.1, we can show that u — t € X under the same restrictions
on cr, (3 and ||/o||- Thus the nonnegative solution just obtained must coincide
with the unique solution / € X obtained from the last sentence of Lemma
2.1.3. Since /o € M by hypothesis, and since M C X. our solutions must
be identical, and the solution / from Lemma 2.4.1 must remain nonnegative.
Summarizing, we have

THEOREM 2.4.1 Consider the integrated form of the Boltzmann equation
(2.20). There exists a constants CQ, RQ such that i/||/o|| < CQ/?O and a3~2RQ
are sufficiently small, then equation (2.20) has a unique nonnegative solution
/ #€M R o .

2.5. Remarks and Related Questions
Polewczak shows in [15] that similar results can be obtained for more general
scattering kernels, and for a wider class of initial data (which demands less
decay at infinity). See also [3] in this regard. Also in [15] classical solutions
are obtained. These are smooth in x provided the data is sufficiently regular.

An open problem is to obtain such a global existence result for the relativis-
tic Boltzmann equation. This equation is described in some detail in Chapter
3. Conservation of momentum remains the same

but conservation of energy requires

in contrast to the classical case

The appearance of square roots here causes the algebraic device (used e.g., in
(2.8), (2.19)) to fail.
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Chapter 3

THE BOLTZMANN EQUATIO
NEAR THE EQUILIBRIUM

3.1. The Perturbation from Equilibrium
We begin by writing the Boltzinann equation (BE) as

Let /.( be a normalized Maxwellian

and set

The goal is to show that initial data which is a small perturbation of \JL (and
which vanishes at spatial infinity) launches a global solution. One studies the
linearized equation for / first and hopes that it is dissipative (this would be
analogous to the entropy inequality). There is indeed dissipation, but not
on the entire space: there is a five-dimensional space (the null space of the
operator L below) which may prohibit, decay in time. For this reason, an
exceptionally careful analysis of the linearized problem is necessary. Now we
compute the equation for /:

because

(Recall that Q* is defined in Chapter 1). Now

39
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Thus the equation for the perturbation / is

where

with

The integrand here in KI can be written as

Therefore

We emphasize one important point: Grad [31], Kawashima [38] and others
normalize the Maxwellian \i as

Thus the exponents differ by a factor of 2.

3.2. Computation of the Integral Operator
Now write

Clearly,
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and hence k\ symmetric, but the computation of fo is not so simple. We follow
Grad's computation [31]. In order to conform to Grad's approach (which has
become standard), we change notation slightly to more explicitly indicate the
arguments of q. Write

Take polar coordinates with V as pole:

and thus

and we write collision operator in the form

As special cases we mention the hard sphere, with diameter 60 for which

and the inverse power law for which

Now write

Consider a rotation u —+ wj_. Then

Thus under a rotation of u; through Tr/2,
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we get u' —> v'. Similarly v' —» u'. Hence such a rotation simply interchanges
u',v'. Set

Then

because such a rotation has unit Jacobian.
Next, note the map (u,v) *-* (u',v') is invariant under u i-> —u, i.e.,

Thus we can extend B* to (0, TT) using

Then we can integrate with respect to 0 as

Now (jj ranges over a full sphere. Let Q — nj^r- Then, after changing u —>
V = u — v, we can write

We write the arguments of Q as above for convenience, as will be seen directly.
Decompose

where
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Then

In (3.25) we will integrate with respect to w first, then £, then u;. One in-
tegrates first over the plane w (which is perpendicular to w). Then we combine
the one-dimensional £ integration in the direction u) with the integral over u to
get a three dimensional integration of |£|w = £. There is a factor of 2 because
in the three-dimensional integral with respect to £ we have —oo < £ < oo.
Thus we have

For fixed ui the change of variables V —-> (£, u') is a rotation with unit Jacobian.
Hence

Then

and

Let

Then

Now

has in the exponent

But
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because w • £ = 0 by definition. Hence

Thus this exponent is

Therefore

so that

Now resolve

Then

and

But Ci • £2 = 0 by definition, and £1 • w = 0 because £1 has direction £, and
£ . w = 0. Hence
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3.2.1. The hard-sphere case. Now let us specialize to the hard-sphere
case:

Thus

so that

Now using this we compute (recall that S+ was defined in Chapter 2)

Fig. 3.1 The Collision Frequency v(v) mid its linear bounds



46 THE CAUCHY PROBLEM IN KINETIC THEORY

Similarly,

This is the explicit form of v(v} in the hard-sphere case. In order to express
ki(u,v) we need

Therefore

and thus ki is symmetric. Notice that neither ki nor £2 is a convolution
kernel.
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This calculation was first done by Hilbert in 1912.

3.3. Estimates on the Integral Operator

3.3.1. Bounds on the Collision Frequency v(v). From above we have

for some c > 0 and /j,(u) = e~H .

a) We have the pointwise bounds (see Fig. 3.1)

for all v. Indeed, we certainly have

everywhere.
For |t'| > 1.

In the set r| < 1 we can write

b) (Monotonicity in the radial direction)

We have

For, from definition
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Thus

so that

Now denote by A the angular integral appearing here, and write o = 2|u||z|:

In the second integral let 0 = 9 — |. Then we get

3.3.2. Bounds on the Kernel. We know that

Thus

Similarly
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Hence

Clearly we have

and hence

LEMMA 3.3.1 Let a > 0: then for k = k\ + /c2,

Proof. This is easy for k\:

which is more than enough for large |v|. The small |u| case is addressed below.
For k-2 we have

Now
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which is more than enough. The estimate for small \v\\s done below.
For /2 we write

Set

Thus

On the set \u — v\ < ̂  we have

Therefore

Change variables by

Then

Hence

This proves the Lemma for large |v|.
For the small \v\ case, let \v\ < 1, say. Then

as desired.
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3.4. Properties of L

Recall that

where

Also, the equation for the perturbation / is

where

Recall from Chapter 1 the identity

Symmetry is an easy property because we already know that ki(u,v) =
k t ( i ' . u ) : hence

provided

Next, assuming q > 0, we claim that L is non—negative: by (3.84), this is
equivalent to
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Add the four choices in identity (3.85) with </> = n~^ f to get

Of course we can write

Suppose that, for i — 1.2,3,

i.e.,

Then L[f] — 0. In fact, f fL[f] dv = 0 if and only if / is a linear combination
of these quantities, i.e., if and only if

For, we have seen above that
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for all /, and that the integrand in this expression is of one sign. Hence

if and only if

Set

then this says that g is a collision invariant:

From earlier considerations. / must be as given in (3.90).
Hence the eigenvalue A = 0 of L has a 5-dimensional null space spanned

by

If there are any other discrete eigenvalues, they must be positive since

for all / 6 D(L). This follows from the spectral theorem as applied to the
self adjoint operator L.

Denote by A''") the n'th iterated integral operator, with K^ = K. Car-
loinan [11] showed that K^ is compact for the hard sphere model. Grad [31]
showed that A''3) is square integrable for more general q, and hence K is com-
pact. Now the spectrum of the self-adjoint operator / H-> v(v)f is continuous
and coincides with the range of i>(v}\ thus it is [I/Q.OC) . By Weyl's Theorem,
the essential spectrum of i/(v) — A" is the same as that of v(v). (The essential
spectrum is the set of accumulation points of the spectrum; equivalently, it is
that set which remains after excluding from the spectrum all isolated points
which are eigenvalues of finite multiplicity.) See [37] (p. 244) for a statement
of a generalized Weyl's theorem. Therefore 0 is an isolated point eigenvalue of
L.

LEMMA 3.4.1 Assume

Then there is a n > 0 such that
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If there are any discrete eigenvalues between 0 and VQ (to which correspond
the eigenfunctions above) we take // = smallest of them. Otherwise, we take
/Jl = 1>0.

3.5. Compactness of K
Write k = \k\\ + \k^\. First we note that K is bounded on L2 via

Therefore

Consider an integral operator

Let fin = An n Bn where

Let xnn« = KH-. a cut off kernel.

LEMMA 3.5.1 (DRANGE [21]) Assume that h - (u . r ) > 0. T is compact on
V if

(i) f K.(u,v)dv is bounded in u:

(ii) n£ L 2 ( f2 n ) for all n:

(Hi) sup,, /(K — «.n) dn —* 0, T? —+ CXD.

Proof. By ('n'j, l'n is compact, on L2. Now we claim that (i) and (Hi) imply
that \\Tn - T\\ —» 0. Assume that the claim is true. Then T, as a uniform limit
of compact operators, is itself compact.

Now
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This proves the claim and the Lemma.

Now recall that A*i is easily L2 in ( u . v ) , and that

Then (i) and (ii) above clearly hold. Write k — k<2 and

Thus

Now

and

because we showed in Lemma 3.3.1 that
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3.6. Solution Spaces

Write <£} = y/1 + |£j2. We define for t = 0,1, . . . and ft > 0

Here u denotes the Fourier Transform of u. Note that L^P C L^, for J3 > /?' + |.
Indeed, assume that w G L^f, i.e.,

Then

In particular,

Define further

where Xft is the characteristic function of [\x\ < R}. The norm is the same.

Spaces in x, v are similarly defined:

Similarly,

with the same norm. Note that all norms are taken first in x, then in v.
In the previous estimates (3.66), (3.68) we have shown that
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Moreover, recall from Lemma 3.3.1 that

Therefore for 0 > 1,

3.6.1. The "dot" spaces. Why does one need the "dot" spaces? These are
required to show that certain semigroups are strongly continuous. Consider
for instance the space B® = L^(v, L2(x)). For t > 0 consider the semigroup
[7(0 denned by

We claim that t >—> U(t)f is strongly continuous from R+ into B^. Indeed U(t)
is bounded because

In order to show the strong continuity, we consider t —> 0+. For any R > 0 we
have

For U\ we have the estimate
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and thus U\ —> 0 as R. —> oo. For any large but fixed choice of R. U? —> 0
as t —» 0+ by integration theory (since v is bounded in the expression Us).
Therefore U(t) is strongly continuous as claimed. By the Hille Yosida theorem,
the infinitesimal generator A of U(t) has dense domain D(A) and

3.7. An Orthonormal Basis for N(L)

We know N(L) is the linear span of {^1/2V)i, - • • , M1/2?/^} where

What follows is a straightforward calculus computation. A relevant integral is

We begin with

Set

Then lieilj^ = 1. Next, compute

Thus we set

Then ||ej+i||L2 = 1 and (ejtei) = 0, j = 1,2,3.
For 65 we compute
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Now we consider

We want (e$,ei) = 0 and HesH/,2 = 1. Now

Therefore we take (3 = 3/2. Then (e5, ei) = 0 and

Thus we take

then

Therefore we take

and an orthonorrnal basis for N(L] is {e\,... ,65} as claimed. Let PQ be the
orthogonal projection from L2(v) onto N ( L ) :

From Lemma 3.4.1 we know that there exist <5i > 0 such that
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LEMMA 3.7.1 (3.133) holds for f € L20(v), /3>l.

Proof. This will follow from the inclusion L^ C D(L). Recall that L[f] =
v(v)f - Kf. We will show that i/(u)/ e L*, Kf(v) € L2 for / € L\.

Since v(v) < c(l -f |u|) < c(v) and /3>l,

Let fc = | fc i j + |fe2|. Previously, when showing that K is bounded on L2 in
(3.100), we showed that

Hence by (3.66), (3.68),

since L2, C L2 for all 0>0.

3.8. Estimates on the Nonlinear Term
We are always assuming the hard-sphere case. Recall that the equation for
the perturbation / from equilibrium is

We define the symmetric form

We begin with some properties of T(f.g):

For the proofs of these assertions, we note that (i) is already known. For
part (ii): the "loss terms" are (with q = q(uj, |u — v|))
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A typical term is

By (3.56), v(v) > c\v\ for large |t>|. Thus

The gain terms Fg are dominated by

Now

Thus

As above, we now use v(v) > c\v\ (which is valid for \v\ > 1) and we are done.

Remark. These estimates indicate that the spaces L^ are the "right ones".

Now we state and prove the key estimate on the nonlinear term T ( f , g ) .

THEOREM 3.8.1 Assume the hard-sphere case. Let i > |, /? > 1 and
f , 9 < E L % > ( v ; H e ( x ) ) . Then

and
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Proof. For the hard-sphere case, we have q(u>, \u — v\) — u; • (v — u) on S+.
We will take t = 2 for simplicity. Then

Similarly,

where e.g.,

etc.
Consider the loss terms. We abbreviate f ( u ) = f ( x , u ) , etc. and will often

use the Sobolev inequality supx |/(x,u)| < c||/(-,u)||f/2(x). A typical term Lg
satisfies

Now recall that for the hard sphere,

Hence

Therefore
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FYom (3.54), c0(l + |u|) < v(v) < ci(l + |v|). Thus we get

Thus with H°(x) = L2(x) we have i/-i£,6 € L^(v,H°(x)) and

as desired.
Next consider the term £5 which involves f x ( u ) g x ( v ) .  W e  h a v e

Therefore

The middle term here is 0((1 + |v|)2). On the last factor we use

Hence li^5|||2(T) is dominated by

It follows that



as desired. All other loss terms can be handled in the same manner.
Now we consider a typical gain term, say G<I. Using (i>')2(u')2 > (u)2 from

(3.141), we get

By the Sobolev inequality we can write

Using (3.145) above, we get

Therefore

as desired. In order to see that e.g.,

we have this simple lemma:

LEMMA 3.8.1 : If \v\ is large, say \v\2 > 4. then either |u'|2 > |u|2/4 or
else |u'|2 > H2/4.

Proof. Consider the invariant energy e = |u|2 + |u|2. If the lemma were
false, then

which is a contradiction.
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Now we can decompose G<i as

Each of these terms satisfies an estimate of the form (3.152). Since both
/, g € Z/g?(t;, #2(x)). each term tends to 0 as \v\ —> oo. The rest of the gain
terms can be similarly treated.

3.9. Equations for 13 Moments
Under the Fourier Transform, v • Vx/ >—> i(v • £)/. Now we regard v • £ as a
linear operator from N(L) —> some subspace W of L2(v). Consider

Recall the form of the surnmational invariants V*:

Clearly each ijik can be written as a linear combination of < / > i , . . . , $7. Put

W = linear span of

Note that v • £ : N(L) -> W for all f € K3, and that AT(L) c W.

Now we construct an orthonormal basis for W. We already have five or-
thonormal vectors e\....,e$ from (3.122), (3.124) and (3.131), so we need 8
more. Consider for some a > 0

We claim that these are mutually orthogonal. Indeed, using (3.120) we get
e.g..
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Then the {67+4}j=1 are orthonormal and

Set ci = 4= [1,1,1]; choose 2 other orthonormal vectors 03,03 such that
ci x 02 = 03 and {01,02,03} forms an orthonormal basis for R3. Thus

Note that 53,-=103^ = 0. It follows that £^=1 c^j — 0 also. To continue the

basis computation for W, let

Next we perform a brief check of orthogonality. We begin with

Thus we take o; = x/2?r~3''4, i.e.,

To find the normalization constant a, we compute
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Similarly (67.65) = 0. Clearly (ee.ej) = 0, j = 2,3,4 because the integrand in
each case is odd. Next,

Since (^+4,61) are all equal, j — 1, 2,3, (ee, e\) — 0 because ci\ +022 + 023 = 0.
Similarly (67,61) — 0.

Clearly, 68,69,610 are orthogonal to e^, 1 < i < 7, and for i — 11,12,13.
Furthermore 6^+10 (j' — 1. 2, 3) are clearly orthogonal to eg except for i = 2,3, 4.
For these cases, we will choose PIQ. We force (en, 62) = 0 via

or

Lastly we consider the normalization constants. e i . . . . , e 7 already have
norm 1. We will have a$ = ag = QIO with

Therefore we take

For QH, we require

Then clearly also

Therefore (3\Q — |. i.e.,
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Therefore we can conclude that an orthonormal basis for W is given by {gj}JiL

In what, follows we compute the equation satisfied by P f . From

we compute, for Wk = (/, e/t) (k — 1,..., 13),

Split / using

Then

where

and

Therefore
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Let P be the orthogonal projection from L2(v) into W:
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Now we compute (L[/],efc) similarly:

For f. = 1,2,3 define a matrix Ve by

Then the first term in (3.181) is

For k, j = 1 . . . . , 13 define

Then the first term in (3.184) is

For the collision term we compute

For the first term we have



Then

which is a symmetric hyperbolic system with constant coefficients.

3.10. Computation of the Coefficient Matrices

For £ € R3, let

where r ( - , •) denotes all the remainder terms.
In particular, when / = P f , we have

In conclusion, we have the following: let

where

A similar calculation works for the gain term T+(Pf, P f ) .
Now write

We call the "loss" term T_(P/,P/) and calculate
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Thus V is symmetric. The 13 x 5 matrix given by the first 5 columns gives
the representation of v • £ as a linear operator from N(L) —> W. Decompose
V(® as

Take k = 1 and write V\\ = V for brevity. Then Vu = Vis = 0 because the
integrands are odd functions of v. and

by the above.
In a similar manner we then get

Recall that

Thus

and

\ow taking k — 2 we have

Similarly

Now we compute Vn(£) whose matrix elements are given by



Again call Vz\ — V for brevity.

Take k = 6: then the first row of V has the elements

Now by direct computation,
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Next we compute V2i(£) whose elements are given by

Recall that

where

Thus

and

Thus
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Hence the first row is given by

Similarly, for k = 7 the second row is

Next, let k = 8: the third row has elements

Therefore Vai = Vas = 0 and

Similarly

Thus the third row is

When k = 9, the fourth row is
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We get for the fourth row

and similarly

for the fifth row.
For row six (k = 11), the elements are

Therefore

for some constant c. But

and thus V$\ = 0. Similarly V(>2 — 0. Clearly Ves — V§± = 0 and

For the integral

we get by direct computation the value (5/4)?r3/2. Hence
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The computation of the remaining rows is similar.
Hence V2i(£) has the form

75

for all W € C13,u; e S2. (Here (•} = inner product on C13).

For the Boltzmann equation (BE) itself, Kawashima's definition is as fol-
lows.

DEFINITION 3.11.2 Let 5(w),w e S2 be a bounded linear operator on
L2(v). S is called a compensating function for the (BE) if

(i) S ( - ) is C00 on S2 with values in the space of bounded linear operators
on L2(v), and S(-w) = -S(u>) for all u> & S2,

(ii) iS(u) is self-adjoint on L2(t>), for all w € S2,

(iii) There exists (5 > 0 such that

Now we introduce the notation

3.11. Compensating Functions

We begin with the definition of Kawashima's Compensating Functions [38].

DEFINITION 3.11.1 Let R(u),u € S2 be a real 13 x 13 matrix. R(u) is
called a compensating function for the system of 13 moments (3.190)

(iii) There is a 6 > 0 such that
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LEMMA 3.11.1 There exist 13 x 13 real constant entry skew-symmetric
matrices RJ (j — 1, 2,3) such that for

we have

for some c\ > 0, all W € C13,u; € S2. Here ( ) is the inner product on C13.

Proof. Let

Here a > 0 is a constant to be specified later, and

Thus each Ri is 13 x 13 real skew-symmetric with constant entries.
Call

Thus

so that
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Now suppose that we can show that the real part of the first term is at least
c\Wi 2 for some c > 0 and appropriately chosen a. The moduli of the second
and third terms do not exceed clW/HW//! < e|W/|2 -f ce |W//|2 for any e > 0.
The last term is of the order of |W//|2. The lemma then follows.

Thus we consider

Now

It follows that

for some C2 > 0. Next we write

and compute directly

To be specific, we now choose



For the sum of the squares of the first two rows, we get directly
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Hence |V2i(w)W/|2 is equal to

Thus now we have, for any a > 0,

Take a = ^K Then

This completes the proof of Lemma 3.11-1.



COROLLARY Let R(UJ) be as in (3.226). Then there exists f3 > 0 such that
j3R(uj} is a compensating function for the system of 13 moments.

Proof. By definition,
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Thus L decomposes as

where £22 is symmetric positive definite.

Next we exhibit a compensating function for the Boltzmann Equation.
Write

Given u € S2, let

LEMMA 3.11.2 There exists (3 > 0 such that S(u) is a compensating func-
tion for the Boltzmann equation

Moreover,

Proof. The last assertion is clear. Recall that

where each W is a constant 13 x 13 real skew-symmetric matrix. Thus S(-) is
C00(52) and S(-u;) = -S(u;), H = 1. This is property (i) of the definition.

Let /,p 6 L2(v). Then

Write
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Then

Therefore

Since fl(o;) is skew-symmetric, iS(u>) is self-adjoint. This is property (ii). For
property (iii): let / 6 L\(v),u € 5'2. Then
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Put / = jP/ + (I —P)/, where P is the orthogonal projection from L2(v) —* W,
i.e.,

Then, for Wj = ( f , e j ) ,  1  <  j  <  1 3 ,

The first term I\ equals

Therefore
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where PO is the orthogonal projection onto N(L).
Now we claim that the second term J satisfies

Indeed

and

Therefore

for any e > 0. Recall that

Now we add these relations, taking e = ci/2 and /3Cf = <5i/2. Then

for some 62 > 0. This proves the lemma.

3.12. Time Decay Estimates
Consider solutions to the linear equation
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Now we define

THEOREM 3.12.1 Let i>Q. Assume that

Then if f € C° ((0,oo); U{] n C1 ([0,oo); He~l) is a solution of (3.255), we
have

Proof. Let ui = 4r and take the Fourier Transform in x:

Let S((jj) be a compensating function as above; K > 0. Consider

where the norm and inner product are over L2(u) and

LEMMA 3.12.1 There exist K > 0, 6 > 0 such that

where



Assume the lemma for now. Multiply the second statement in the lemma
by etSP(&; we get
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Therefore by the first inequality,

Multiply this by <£)2£ = (1 + \£\2Y and integrate in f:

The left side here is 1/(*)|||. Let

Notice that the function

is increasing. Thus

The integral is dominated by

Now we take e = 1 and t > I (without loss of generality) to get



Now we form the following combination: compute (1 +1£|2) times (3.273), and
add the result to K times (3.275). The result is

Since iS(<jj) is self-adjoint, the first term is

Take the inner product with / and the real part of the result:

Next apply -i\£\S(uj) to the / equation:

by the conjugate of / and take the real part to get

For the differential inequality in the lemma, multiply

and S(u>] is a bounded operator by definition:

holds is clear for small K, say 0 < K < KI , because

Clearly the same kind of estimate holds for the </-term in (3.264).

Proof of Lemma 3.12.1. That
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or

For 0 < K < 1, the second term on the left of (3.278) is at least

By the previous lemma, the third term on the left, of (3.278) is at least as large
as

Therefore the left side of (3.278) is bounded below by

Now, to estimate the right side of (3.278): by hypothesis, Pog = 0 and

Therefore the absolute value of the first term on the right of (3.278) equals

Now use

and

Thus the absolute value of the second term is dominated by



This completes the proof of Lemma 3.12.1.

3.13. Time Decay in Other Norms
Write the Boltzmann equation (BE) as

According to the Hille-Yosida theorem, we want a bound on (B + A7)"1 in the
appropriate norm. Thus we want to estimate a solution to the equation

we get

To validate this we need to check that — B generates a strongly continuous
semigroup.

LEMMA 3.13.1 — B generates a strongly continuous semigroup e~tB in
Hf, £>Q, and in B^ for t > 0, ft > f .

Proof. We sketch the proof for the choice T-tf, (. > 0. After applying the
Fourier transformation in x to the equation

where

Thus formally

where

Now take e, n small such that

Thus for any e > 0, the right side of (3.278) is not more than
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This is the required estimate of the Hille-Yosida theorem. We have previ-
ously shown that for /? > 1 we have L\ C D(L), in fact, for such j3 we have
v ( v } f , Kf 6 L2. This set is dense and we are done.

LEMMA 3.13.2 (i) Let

This says

i.e.,

For 3?A > 0 we then get, with the help of the Schwarz inequality and properties
nf T,

Write pi(£) = (1 + \(,\2Y• We multiply this equation by the conjugate of pe(£)f,
integrate over M| x R^ and take the real part of the result to get
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Then

(ii) Let

Put

Then

and



Proof. We first prove (i) under the additional assumption that /o has com-
pact support in v. Let f ( t ) = e~tBfo. This is a solution of the linear equation

Thus

by the additional assumption. Therefore

Now we can apply the previous estimate:

Next, rewrite the linearized Boltzrnann equation:

and consider

where
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Hence

It follows from (3.101) and Lemma 3.3.1 that

Therefore there exists c, 0 < c < VQ such that
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and
(3.306)

Hence

Since

we get

Now iterate in this manner:

etc. Eventually we will have the following: for some CQ > 0

Using (3.308) on the right side, we obtain (i) under the additional assumption.
Now replace /o by Xttfo where \R = 1 on (H < fi} is a characteristic function.
For f n ( t ) = e~tBXR/o we get with a constant independent of R
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But

This proves (i).
For (ii): it suffices to assume as above that h\,ht have compact support

in v. So again

Abbreviate g = T(hi, /i2). Then since a - 1 > 3/2 and c(l + \v\) < i/(v),

Here in the last step we used Theorem 3.8.1.
Next we claim that

To get this, we want to bound

For the gain term rgam, we have using (3.141)

(Recall that fqdw = Q(\u - v \ ) ) .
Now square and integrate in v: The result follows because

Since the loss term is easy to handle, we omit its estimate. This proves that
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Therefore

Hence

is a solution of /( + Bf = g with zero data and

Also Fog = 0 because PoT(hi,h2) = 0. Therefore by the L2-decay estimate,

Let

Then

and

Therefore

This is the L2 version of (ii). To strengthen it: write as before the solution /
to ft + Bf = g with data /o = 0 as

Let
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We claim that for 0 < m < /?,

Indeed,

Now i/(v) times the integral here equals

Therefore

Now recall that

Therefore for 1 < m < /3,

We iterate this as before to get part (ii) of the lemma.

3.14. The Major Theorem
Finally we can state and prove the main result.
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MAJOR THEOREM 3.14.1 Assume the hard-sphere case. Assume that fo €
Be

0 HL1-2 for some £ > 3/2, (3 > 5/2. // l/olk/3 + ||[/o]||i is small enough, then
the (BE)

has a unique global solution

which satisfies

Proof. We show this iteration converges: /° = 0,

Let

We know that the linear term satisfies

and that for

we have

Therefore
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Then from (3.340) we have for / 6 Xt,0

Assume that

Then

Take 6 < ~ to get

Hence

To see that Q is a contraction, recall that T is bilinear and write

Thus

We apply the above estimates with hi = /2 — /i, h-z — /2, etc. Thus fi is a
contraction on Xi^ for 8 sufficiently small; its unique fixed point is the desired
solution.

3.15. The Relativistic Boltzmann Equation
In this section we write down the relativistic Boltzmann equation and state two
of the major theorems known regarding asymptotic stability of the equilibrium.

The relativistic Boltzmann equation is

Here the dot represents the Lorentz inner product (H ) of 4-vectors,
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XQ = —t and C(F, F) is the collision integral. Normalizing the speed of light
c — 1 and the particle mass m = 1, we have V • V = 1 or UQ = \/l + |u|2.

Fig. 3.2 Tfte Collision Hyperboloid

It is convenient to separate the time and space variables and to divide
(-RB)o by vo to obtain

where Q(F,F) = VQ1C(F,F) and

where t/2 = U • U = UQ - \u\2, \u\2 = u\ + u\ + «§, 6 is the delta function in
one variable, <5W is the delta function in four variables, and all of the F are
evaluated at the same space-time point (t,x). Furthermore a(s, 0) is called the
differential cross section or the scattering kernel; it is a function of variables s
and 0 which will be defined below. The delta functions express the conservation
of momentum and energy:
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Of course, the 12-fold integral in (3.350) defining Q may be reduced to a
5-fold integral by carrying out the delta function integrations (see below).

A relativistic Maxwellian is characterized as a particle distribution (i(v)
which minimizes the entropy subject to constant mass, momentum and energy.
It is an equilibrium solution of (RB) since Q(//, n) = 0, and it has the form

where a e M, b e R3 and c € M~*~, c > \b\ are five parameters (constants).
We consider at first a solution F(t,x,v) of (RB) which has period 27r in

each x variable and satisfies an initial condition F(0, x,v) = F°(x,v). We
assume that the initial distribution F°(x,v) is close to a Maxwellian n(v).
The 5 parameters a, 6 = (61, 62, fyj) and c are chosen so that F° and /j, have
the same total mass, energy and momentum:
(3.353)

where the integration is over x G B = (0,2?r)3 and v E R3. See Theorem 3.15.3
below. The periodicity condition in x implies that (RB) has been solved in a
box with specular boundary conditions.

As was seen earlier in this chapter in the classical case, the proof of asymp-
totic stability is based on the fact that the linearized equation possesses some
dissipation, due to the increase of the entropy.

In the relativistic case, we write the linearized equation of (RB) as

where K is a certain integral operator in v, and v(v) > 0 is a scalar function of v
which represents the dissipation. In order to prove dissipation on the operator
level in the sense of spectral theory, one needs compactness properties of the
solutions of (3.354). Compactness in the v variable follows from the form of K,
while compactness in the x variable follows from the fact that v-averages of
solutions of transport equations tend to be x-smoothing. The precise condition
used is a kind of relative compactness of operators, called A-smoothing. To
some extent one can follow the abstract approach that Shizuta [49] applied to
the classical Boltzmann equation.

For background on the relativistic equation we mention the book of de
Groot et.al [16]. The linearized relativistic equation (3.354) is solved by
Dudynski and Ekiel-Jezewska [22].

Below we explicitly write the equation and state the collision invariants
and entropy inequality. Then the form of the linearized equation is specified,
and the function spaces and the main theorem are formulated. Details may be
found in [29].



It may not be a priori clear that the expression for cos 6 is well-defined.
We study this is Lernma 3.15.3 at the end of this chapter.

In de Groot et al. [16] the delta function integrations in the collision
integral are carried out, resulting in the equation

where dfJ is the element of surface area on S2 and we have written o as a
function of g and 0. The variables u, v, u', v' are related by the equations
(3.351). These equations allow u' and v' to be written in terms of u and v and
a pair of variables 0 and <p which run over the unit sphere S2. Equation (RB)
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Let us begin by defining the remaining variables in the collision integral
(3.350). We define

and

Furthermore, we define the M011er velocity as the scalar VM given by

or

The two expressions for v\f are equal because



98 THE CAUCHY PROBLEM IN KINETIC THEORY

is the result of one such representation. A slightly different representation is
given in Appendix II of (29]. Indeed, we may write for a vector Jl 6 S2

Another difference from the classical situation is that the Jacobian is no longer
unity. Indeed, from [28] we know that

We remark that in the center-of-mass coordinate frame where u + v = 0, -y/s
is the energy, — 2<? is the relative momentum, and 0 is the scattering angle.

In the classical limit, where \u\ + \v\ « 1, we have s ~ 4 + \u -t>|2, so that
VM ~ \u — v\ and (RB) formally becomes the classical Boltzmann equation.

The collision invariants and the entropy are essentially the same as in the
classical case, modulo the form of energy conservation. Define the symmetrized
collision operator
(3.360)

The collision operator in (RB) is Q(F,F) = Q*(F,F). For example, for /, g
smooth and small at infinity, the collision operator satisfies

Thus it follows that, for the solutions of (RB), the mass / Fdvdx. the mo-
mentum / vFdvdx, and the energy / -^/l + |v|2 F dvdx are invariants. Fur-
thermore / F log F dv dx is a non-increasing function of t.

The linearization proceeds as follows. First of all, we may normalize the
Maxwellian to be

With the help of [28], we set

and obtain
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As we did earlier in this chapter, we change variables from F to / by

99

or

and, with a abbreviating a ( g , 9 ) ,

for any function f ( v ) which satisfies (3.367).
The solution spaces are defined as follows. In the x variable we use the

space Ck of periodic functions whose fcth derivatives are continuous, or the
Sobolev spaces Hk of periodic functions whose fcth derivatives belong to L2.

where

Substituting this into (RB), we have

If F is a solution of (RB) and / is defined as in (3.362), then we have

The entropy implies the following dissipative property of the linearized opera-
tor L = v + K:
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Let X denote either Ck for fc > 0 or Hk for fc > 2. Let pa(v) = (1 + |v|2)Q/2.
Define GQ(X) as the space of continuous functions / : R3 —> X for which

(Earlier in this chapter, when X = H(, we called these spaces B& — U£(y. He).
Since the space X can be chosen differently in this section, we use the different
notation of Ga(X) to avoid confusion).

Furthermore define G^(X) as the closed subspace of Ga(X) for which

furnished with the same norm. Let

where a > 0, k > 0 and ( > 2.
We now state the hypothesis on the collision cross-section cr(g,0). It is to

satisfy

and

where c\, ci and 03 are positive constants, 0 < 6 < |, 0 < /? < 2 — 26, 0 < £' <
4, P' > 0,7' > -2, and either 7 > 0 or

Now the main theorem can be stated.

THEOREM 3.15.1 ([29]) Assume thata(g,0] satisfies (3.370)-(3.372). Let
Y be either of the spaces (3.369), where a > 5(8 + 0). If f° 6 Y satisfies
(3.367) and \\f°\\Y is sufficiently small, then there exists h > 0 and a unique
global solution f ( t , x, v) of(RB) which is periodic in x and satisfies /(O, x, v) —
/ o (x , V ) , / eC( [0 ,oo) ;T) and

The required estimates on the collision operator are similar to those in the
classical setting. Indeed, under the hypothesis (3.370) - (3.372) on a, we have
the following estimate. Consider any of the spaces
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Then from [16], [22] we know that Kf = K2f - Kif, where A'i,2 are the
integral operators

with the symmetric kernels

where

for a > /3/2, i > 2, k > 0. Let |] • ||Q be the norm in any one of these spaces.
If / € GS, then Q(f, /) 6 G° - anda 2

The map Q is continuous from GQ into G^_/ j / 9 ; in fact

Next we specify the relevant integral operators. Recall that the equation
for the perturbation / (using F = fi + jt1/2/) can be written as

where

(LRB)

and (with a = cr(g, &))

Here UQ



102 THE CAUCHY PROBLEM IN KINETIC THEORY

and /o is the Bessel function of the second kind of order zero.
In order to estimate the kernels, we use the following elementary inequali-

ties:

We establish the bounds on g only. The bound g < ^\u — v\ is equivalent
to 4<?2 < \u — v|2, i.e., to 2uQVQ - 2u • v — 2 < \u — v|2, i.e., to

Squaring both sides, we obtain the upper bound in (i). For the lower bound
in (i), we write

From these bounds and the assumptions on a, one obtains the following esti-
mates:

i) There is a positive constant c, depending only on 7, /? such that

for all v 6 R3, where VQ •= \/T+ |i>|2,
ii) There is a positive constant c such that
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iii) There is a positive constant c such that

provided M + f3 < 2, M < 2 if 7 > 0.

As a Corollary, we see that the kernel k\ may be taken to satisfy the same bound
as ki. These estimates require careful study of explicit integrals involving
Bessel functions.

Lastly we list several integral properties of fc(u,v) = k-2(u,v] — k\(u,v)
which can be used as in the classical argument:

i) fc(«, v) is a symmetric kernel,
ii) supj, J \k(u, v)\ du < oo,

iii) sup,, f k2(u, v) du < oo,
iv) f\k(u,v)\(l + \u\2)-n/2du < c(l -f |v|2)-2(Q+'») for any a > 0, where

This concludes our brief sketch of the set-up for (RB) near equilibrium in
the case of periodic boundary conditions. The proof of smoothing is omitted;
we refer to [29] for details.

Now we turn to the study of the pure Cauchy problem for (RB) near a
relativistic Maxwellian. Although some of the basic estimates above can be
utilized, the method of proof is fundamentally different from the periodic case
because smoothing operators in unbounded space lose their compactness and
therefore the decay to equilibrium is no longer exponential. One can extend
Kawashima's proof (done earlier in this chapter) to the relativistic case, thereby
obtaining smooth solutions which tend to equilibrium. Recently Andreasson
[1] has also studied the approach to equilibrium of the general weak solutions
of (RB). This is analogous to the non-relativistic proof in [42] and is base
on a regularizing property of the gain term. Furthermore the nonstandard
approach of Arkeryd [3] is put into context for the relativistic situation.

An energy estimate is the most direct way to exploit the increase of entropy.
For the linearized equation, we have seen that the entropy increase corresponds
to the property (Lf. f) > 0. However, the entropy is difficult to exploit because
of the five-dimensional nullspace of L. After Fourier transforming in the x vari-
able, we have seen in Kawashima's approach the construction of a modified
energy form which is positive definite. The modification is accomplished via a
compensating function, an operator of finite rank using 13 moments which are
related to the streaming term. In the relativistic case one requires 14 moments
because the relativistic energy y/1 -f |v|2 depends nonquadratically on the mo-
mentum v. The construction of the relativistic compensating function then is
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coupled to the estimates on L and Q from above to obtain a £~3/4 decay rate,
first for the linearized problem and then for the nonlinear one.

The hypotheses on the scattering kernel are slightly different in this case.
We assume that a satisfies the following:

where c\,C2 are positive constants, 0 < 6 < 1/2, 0 < 0 < 2 — 26 and either 7 >
0 or M < min{2 - 0, | - 6, |(2 - 26

We use || || to denote the norm, and ( , ) the inner product, in L2(R3).
J/fc(R3) denotes the usual Sobolev space with norm ]] ||fe . For functions
/(x, v) depending on both variables we take norms first in x and then in v.
Thus LI(LP) denotes L(?(R?; LP(R|)). We use the special notation

for the norm in L2(Hk). We will use the same weighted L°° spaces Ga(Hk)
and Ga(Hk) from above.

In terms of these spaces we now state the main result. Recall from (3.362)
the definition of / in terms of ̂  and F.

THEOREM 3.15.2 ([30]) Write. Lf — v(v)f + Kf and consider the Cauchy
Problem

Assume (3.383) on the scattering kernel o(g, 0). Letk > 3/2 and a > (3+/3)/2.
Let /o € G%(Hk) r\L2(Ll). Then there exist constants co > 0, c > 0 such that
whenever

the Cauchy Problem has a unique global solution

which tends to zero according to the estimate



THE BOLTZMANN EQUATION NEAR THE EQUILIBRIUM 105

for 0 < t < oo.

As in the non-relativistic case the proof begins with the construction of
the equations for the 14 moments. We know that the nullspace N(L) of L
is spanned by the five functions ^/JI, Vj^/jH (j = 1,2,3). >/l + |u|2 y^Z. We
regard N(L) as a subspace of L2(v) and we let PO be the orthogonal projection
onto N(L). The subspace W of 14 moments is defined as the space generated
by N(L] and the images of N(L) under the mappings f ( v ) —>• Vjf(v) (j =
1,2,3). Thus

where

Then W D N(L) and the operator of multiplication by v • £ maps N(L) into
W. for each £ € M3. We denote by P the orthogonal projection of L2(v) onto
W. An orthonormal basis for N(L) is:

where KI,. .. ,K$ are normalization constants and 05 is chosen so that (es, e\) =
0. That is,

An analogous computation to that earlier in this chapter shows that an
orthonormal basis for W is given by e i , . . . , e i 4 where e i , . . . , e s appear in
(3.389) and

where the KJ are normalization constants and d6,d7,c/8,ci2,ci3,ci4 are other
constants.

Again in analogy to the classical situation, we now project the Boltzmann
equation onto W and write the result as an equation for the Wk — ( / ,£&).
Indeed, let f(t.x,v) satisfy the linear equation
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Then, formally, W — [Wi,..., Wi4]r satisfies the equation

where Vi (i = 1,2,3) and L are the symmetric matrices

Explicitly, the matrix V(£) = £]i=1 ^*& nas *ne following structure. We write
it as

where V\\ is 5 x 5, V\2 is 5 x 9, V^i is 9 x 5 and Vii is 9 x 9, the submatrices
Vii and Vj52 are symmetric and V^\ ~ ^12- Furthermore,

where m, a, 6, d', an, 022 and 0,33 are positive constants and d < 0.
At this point in the argument the compensating function itself can be

constructed. Its use is the same as in the non-relativistic case, so we omit it.
We conclude this section with two arguments special to the relativistic

case. We show that the Maxwellian parameters can indeed be determined in

g is the vector with components (g,ek), and R is a sum of terms involving

(I ~ P)f-

Because our goal is to take the Fourier transform of equation (3.391) with
respect to x, we study the 14 x 14 symmetric matrix with entries
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among the given parameters must hold. For this purpose, consider the measure

where b e M3 ,c > |6| and //0 is a constant for which JR3 d/z = 1. Then
A2 + |J5|2 < C2 is the same as the inequality

the case of periodic boundary conditions. Then we show that the scattering
angle Q from (3.357) is well-defined.

For the determination of the Maxwellian parameters, we must solve this
problem: we are given a smooth nonnegative function F°(x,v), periodic in x
and decaying in v. We seek 5 parameters a e M, b € M3 and c > \b\ such that
the function

satisfies (with B = (0. 27r)3)

We write ea = a. Then we need to solve

THEOREM 3.15.3 ([29]) The nonlinear system (3.396) always has a solu-
tion a. b. c.

Proof. First we show that the relation

i.e.,
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where </?(s) — %/! + s2 is strictly convex. Since | / vdn\ < / \v\dp, it suffices
to show that

This is just Jensen's inequality, and we are done. Now we show that the
condition A2 + \B\2 < C2 is sufficient for existence.

Define 7(6, c) - (2?r)3 / eb't'-cv/T+H*du. Then / depends only on |6| and
c; we write I ( b , c ) = 7(|6|,c) and calculate

Now we can evaluate 7 in terms of Bessel functions. For fixed |6| and
c > |6|, consider

The 3 equations can be rewritten as

If the argument of the function Ji(...) here were real, the integral would
be known (cf. [33], p. 706, #7). Under the assumption that c > \b] (to

We choose b parralle to B. Then (3.398) becoams a slcaller equation, and we are reduces tpo 3 quati
reduced to 3 equations in 3 unknown a[b] and c. then by (3.3980we have 



THE BOLTZMANN EQUATION NEAR THE EQUILIBRIUM 109

be verified below at the solution) we can justify an analytic continuation to
complex arguments, and get for the right-hand side

since K-v — Kv. Now call x = ^/c2 — \b\2. Differentiating with respect to c,
we get

and hence

with g(y) = lGTT3y-2K2(y). Thus

We know that £(x-2K2(x))
equations (3.397)-(3.399) become

Dividing the last two equations by the first, we get

We abbreviate this by
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Now solve (3.405) for ^- and put the result, into (3.406):

so that

Thus any solution c generates a solution |fe| = |6(c)| for which the condition
|6| < c holds.

It remains to solve for c. By recursions for the Bessel functions.

Now consider (3.408) rewritten as q(c) = 0, where

From the series definitions of the Bessel functions, we have near y = 0,

From (3.409) we see that

so that

Since |6| = |6(c)| is known from (3.407), (3.408) is an equation in c alone. In
fact, by definition and (3.407),

Therefore (3.406) can be rewritten as

Since A > 0 and C > |5|,
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Thus as c —» 0,

and therefore q(c) > 0 for small c > 0.
For large arguments, both K<z(y) and Ks(y) have the asymptotic represen-

tations Jf- e~v. As c —>• oo then,

As was shown at the beginning of the proof, this is negative. Since q is con-
tinuous in {c > 0}, we are done.

Lastly, we show that the scattering angle defined by

is well-defined.
We are dealing with 4-vectors

where VQ > I and the Lorentz inner product is given via

The scattered variables U', V satisfy (3.412) and

LEMMA 3.15.1 Let V • V = U • U = 1. Then

Proof. We have

and hence

so that

Equality holds only if u and v are linearly dependent. However, this cannot
occur since both lie on the hyperboloid.
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For the second assertion we have

by the first part. This assertion means that U — V is spacelike.

LEMMA 3.15.2 Let V, U, V and U' satisfy (3.412) and (3-413). Then

Proof. The parallelogram law gives us

This is the first assertion. For the second, we have

and similarly

Now the second assertion follows from the first.
Lastly, by (3.413) we get

Expanding this, we have

as desired.

Using (3.413) we can write

where we have used the parallelogram law in the last step. Therefore

Now we are in a position to estimate the scattering angle. Recall that
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Lemma 3.15.3: Let the scattering angle be defined as in (3.411) above.

Then we have

Proof. Applying part (1) of Lemma 3.15.1 to the vectors V and V, we
have V • V > 1. Hence by (3.414)

By part (2) of Lemma 3.15.1 then, cosfl < 1.
Now we claim that cosO > —1. By (3.411) and (3.414) we have

Thus cos# > — 1 if and only if

(3.416) holds whenever

and this is valid whenever

By the conservation law U + V = U' + V, this is the same as

This relation is valid by part (1) of Lemma 3.15.1.
This exposition is due in large part to W. Strauss.
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THE VLASOV-POISSON SYSTEM

4.1. Introduction

The Vlasov Poisson system (VP) can be written as

Note that E = Vxu, u = — -^ * p, Aw = p (r = |x|). We take

(In plasma physics problems, we should actually have several species (as writ-
ten in Chapter 1), or at least a neutralizing background density.)

Here is a brief history of the mathematical solution of the Cauchy Problem
for (VP). The first paper on global existence is due to Arsen'ev [1]. He
showed global existence of weak solutions. Then in 1977 Batt [5] established
global existence for spherically symmetric data. In 1981 Horst [27] extended
global classical solvability to cylindrically symmetric data. Next, in 1985,
Bardos and Degond [2] obtained global existence for "small" data. Finally, in
1989 Pfaffelmoser [34] proved the global existence of a smooth solution with
large (unrestricted size) data. Later, in 1991, simpler proofs of the same were
published by Schaeffer [41], Horst (28], and Lions and Pertharne [31].

A basic observation is the following. Take /o smooth arid of compact
support in (#,?;), and assume local existence. Put

Q(t) = 1 +sup{|u| : there exists x € M3, T 6 [0, t] such that f(r,x,v) ^ 0}.

A by-product of local existence is this: / can be continued to [0, T] (T arbi-
trary) provided
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See Batt [5] or Horst [27]. Thus we need to control the influence of large
velocities.

Here is a statement of Schaeffer's Theorem [41].

THEOREM 4.1.1 Let 0 < /0 e C&, 7 = ±1. Then the Cauchy Problem for
(VP) has a unique Cl -solution, and for any p > ||, there exists a constant cp

such that

The rate of growth of Q in time has been improved in [28] to Q(t) < ct In11//141
for large t.

4.2. Preliminaries and A Priori Estimates

4.2.1. The Characteristics. The characteristics are the solutions to

Since

we have

arid sup,j. v f < ||/o||oo, assuming that /o is nonnegative and bounded.

4.2.2. The Measure Preserving Property. The map

is a measure preserving homeomorphism. Assume this for now. For a € Lj ,
consider

Then the Jacobian equals 1 and

Change variables by
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Thus

Now we return to the Measure Preserving Property. Actually this follows
directly because (4.3) is a Hamiltonian system, but we will proceed via a

computation. We need to evaluate the JacobianX\,\ • We compute the
variational Ordinary Differential Equations: put

Take ^ and set e = 0 to get

Thus

Again this map has unit Jacobian and

Hence

Similarly, let

and set
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We abbreviate this as it — A(s)u where u = [y w]T.
Let U(t) be the fundamental matrix solution of (4.9). Recall that

because the trace of A vanishes identically. Hence this mapping preserves
measure.

4.2.3. The Energy. We have

and hence, assuming that / has compact support or vanishes with sufficient
rapidity at infinity, we find by formal integration

where

Now

follows from integrating (VP) over v. Hence ||p(<)lli = const. Further, we
compute

Thus

For the plasma sign, 7 = +1, we get automatic bounds on both quantities.
Now we make the claim that even if the energy is indefinite (i.e., if 7 = —1)
we still have



so that

Therefore even if 7 = —1, ff \v\2fdvdx < const.

and hence

Thus

where

We choose R via R3 = R^ • e, or R = e1/5. Then

Therefore ||.E7(£)||2 < c||p(t)||gy3 because ||p(i)lli = const. Now write

We take A = 2, n = 3, p = 1. Then q = 6/5 and hence

where

Recall that

THE VLASOV POISSON SYSTEM 121

This observation is due to Horst [25] who also showed that in this case (7 = — 1)
the solution can blow up in finite time on Rn, n > 4. See the end of this
chapter. In order to establish the claim, note that
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4.2.4. Bounds on the Field. A standard estimate on the gradient of a
Newtonian potential (with Au = p, E = Vxu) is

For the proof, write

as desired.

4.2.5. Estimates on the Derivatives of the Field. Let 0 < p 6 L1 be
Lipschitz. Let Lip p be the Lipschitz constant for p. Then for 0 < d < R,
(4.23)

where r — \y—x\. For the second term (involving the integral of p ( t , y) — p ( t , x ) )
we have the bound

The third term (involving the integral of p ( t , y ) over d < \y — x\ < R) is less
than

Proof. ([5]) Classical differentiability of potentials implies
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and the fourth term (involving the integral of p(t, y) over |y — x| > R) is
dominated by

Similarly, for i ̂  k,

\

which satisfies the same estimate.

COROLLARY: Suppose also that 

Then for a solution to (VP)

Proof, Simply replace Lipp by supx \Dxp\, and take d 

Suppose that the v-support of / is bounded for bounded times. Then there
exists Q(t) such that

and

Therefore from (4.16), (4.19) and (4.22) we have

and \EX\ grows at most like ln(crsup.E „ |/x|) for \fx\ large (t < T).

4.2.6. Estimates on the Derivatives of the Density. For 0 < t < T, T
arbitrary, let / satisfy

Let D be any x derivative. Then
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so that

Hence

Define

and assume that Jo has bounded partial derivatives. Then

We see that dvf satisfies an inequality of similar type because

It follows that (with a different constant CQ)

However, from Section 4.2.5 we know that

Therefore for t < T,

It now follows by an application of the Gronwall inequality that

as well as
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4.3. Sketch of the Existence Proof
Let

Given /o > 0, compute po = f fodv; then UQ via Auo = po, then EQ = Vi/o-
Then we get /i by solving (dt+v- Vx)/i + E0 • Vvfi = 0, /i(0, x, v) = f0(x, v
etc.

In general: given /„, define

Then we define fn+ito be the solution of

The characteristics are

so the characteristics change with n, but we still have the essential feature that
0 < fn(t,x,v) < const, because /„ is constant on its characteristics. When
one applies the above estimates to these iterates, and addresses the relevant
regularity issues, the local existence theorem follows. This iteration is studied
in full detail for the more general case of the Vlasov Maxwell system in the
next chapter.

4.4. The Good, the Bad and the Ugly
From now on we can assume that 7 = 1. This is because we have already
shown that the kinetic energy is bounded in (4.16) even when 7 = — 1, and
this is the only ingredient needed in the argument which follows.

Let ( X ( t ) , U ( t ) ) be any fixed characteristic:

for which

For any 0 < A < i, we have
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by (4.6).
Let 0 < P < Q(t), R > 0, A = f (ciQ4/3(t))-i, where the bound for the

E field is ||£(t)l|oo < ciQ4/3(t) from (4.27).

We partition the integral in (4.36) as where

For the characteristics recall that when we set

we can invert via

In particular,

Firstly we make a number of preliminary observations
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Then

Now if XG(- • •) 7^ 0, then V(t, s, y, w) must satisfy either

Therefore by Preliminary 2(A), 3(A) we have either

Set

Then ||/o(s)||oo < cP3 by (4.38). Moreover, 0 < p < p, and hence \\p\\5/3 <
l lp l l s /3 < c. Therefore using (4,22) we get

Thus we have

We now estimate the integral over the good set. Let

Let
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Now we turn to the estimation of the integral over the bad set. Let
y = X(s,t,x,v), w = V(s,t,x,v). By Preliminary 2(B), 3(B),

and either

or

Therefore

by Preliminary 3(B). Set

Now we claim that

This is the bound for the bad set.

Now consider estimation of the integral over the ugly set. The time inte-
gral smoothing, a crucial issue, will be used here. Let Z(s) = X(s,t,x,v) —
X ( s ) ; pick so € [t — A,t] such that |Z(so)| is minimal. Now
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Using

we see that there are three cases:

(i) if s0 = t- A, then s - s0 > 0 and Z(sQ) • Z(s0) = ̂ \Z(s)\2 > 0
because the minimum occurs at the left end point.

(ii) if so = t, s — so < 0 and Z(SQ) • Z(SQ) < 0 for similar reasons.

(iii) if t - A < so «, then Z(s0) • Z(s0) = 0.

This establishes the claim. Thus

Now it follows from Taylor's Theorem that

Now fix v and define

Each is non increasing.

Therefore

so that
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Fig. 4.1 The Upper Bounds &i(x)

Then for i = 1,2,

Now

Similarly we treat $^ Gi(rp)dT). Therefore

Hence

It follows that

Hence
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by the energy bound (4.16).

Now we collect the estimates (4.39), (4.40), (4.49) to get

Since Q is non-decreasing, there exists T\ such that

Take to in the interval of existence. Without loss of generality, to > T\. Let

Here c is independent of the particular characteristic (X, (7), so

for

4.5. The Bound on the Velocity Support
The bound on Q(i) is obtained as follows. From (4.3) and (4.51) we have

We take P = Q4/ll(t); R = Q™/™(t) ln~1/2 f^1). Then
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as long asti>Ti. Then

Therefore Q(to) is bounded, and the proof is complete.
We conclude this proof with some remarks on related techniques and prob-

lems. The proof just given is a modification of Schaeffer's simplification [41]
of Pfaffelmoser's original proof [34]. In the proof of Horst, [28] the integral of
E along characteristics is partitioned in a rather similar fashion, but Horst
shows that the growth rate of Q(t) is essentially first-order in t, as mentioned
in the beginning of this chapter, and he allows more general data. A com-
pletely different and elegant argument is given by Lions and Perthame in [31].
They show that higher moments of / in v can be estimated. They employ a
representation for p which is obtained by integrating along the straight line
characteristics of the Vlasov equation (4.1).

The relativistic Vlasov Poisson system has the form

where E and p are given as before, 7 = ±1 and

Now we have

which implies that

which is a uniform lower bound on the length of each subinterval. So there is
a first i, say i = k, such that tk < T\. Thus t^ > 0 and therefore
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This is not a physically well- posed equation, since it lacks Lorentz invariance
(the proper coupling to the Maxwell equations restores the desired invariance).
Nevertheless, it seems that this should be mathematically simpler and nearly a
prerequisite for solving the Vlasov-Maxwell system globally in time. However,
none of the now known methods applies. Thus the global solvability for "large"
data remains open. In this case, the sign of the nonlinear term is important;
finite-time blowup can occur for "large" data if the force is "attractive", as we
show below (cf. [21]).

4.6. Blow-up in the Gravitational Case

We conclude this chapter with a brief discussion of the gravitational problem
for the Vlasov-Poisson system. In this case the energy has an indefinite sign,
which allows the possibility of finite time blow up in higher dimension.

We begin with the argument of Horst ([25]) which shows that if we pose
the non-relativistic problem in a phase space Rn x Kn with n > 4, then any
smooth solution can exist only on a finite interval of time.

The equation can be written as

and hence

The conserved energy in this case is

We will assume that £Q < 0, and that n > 4. Let /(t, x, v) be a nonnegative
smooth solution with data of compact support existing on [0, T) x Rn x ]Rn

with finite energy. Then we claim that T < oo.
For the proof we put r = \x\ and compute
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Now
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The right-hand side here is negative for sufficiently large t (because of the
assumption 5o < 0) while the left-hand side remains nonnegative. This leads
to an upper bound for T, and establishes the result.

Lastly, consider the relativistic Vlasov-Poisson system with 7 = — 1 in
three space dimensions:

Thus from (4.60) we get

Integrating twice in time, we have

where E = Vxu, Au = p = j f dv and



and, with r = x\,

where

Integrating the dilation identity once in time, we have

Now we use the radial nature of the solution. As is well known, the spherically
symmetric form of the solution to the Poisson equation Aw = p is

so that

Then we have a uniform in time bound |M(£, r)| < MO < oo by the L1 conser-
vation law. Thus

Hence from (4.61) we have

Set

THE VLASOV-POISSON SYSTEM

The conserved energy for this problem is

We will assume that £\ < 0. Let /(£, x, v] be a nonnegative spherically symmet-
ric smooth solution with data of compact support existing on [0, T) x R3 x R3

with finite energy. Then we again have the result that T < oo.
Using direct calculations very similar to those above, we obtain the dilation

identity

135
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where we have used (4.62). Integrating this once in time, we get

Once again we find an upper bound for T using the hypothesis that £\ < 0,
and the proof is complete.

In the references we include a number of papers on related problems which
have not been discussed. In particular, there one will find results on stabil-
ity of certain solutions to the Vlasov-Poisson system, numerical algorithms
and treatments of the Vlasov-Poisson-Fokker-Planck system (which models
collisions using diffusion in v-space).
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Chapter 5

5.1. Collisionless Plasmas
The goal in this chapter is to derive a sufficient condition for the global exis-
tence of a smooth solution to the relativistic Vlasov Maxwell System (cf. [31]).
As in the Vlasov-Poisson case, this condition reduces to the control of large
velocities.

A Plasma is a completely ionized gas. We assume as usual two species:
electrons, with charge —e, and positive ions, with charge Ze (Z € N). The
major assumptions are that the plasma is at high temperature, is of low density,
and that collisions are unimportant. "High temperature" means

where T is the temperature, N is the total number of particles per unit volume,
and f ~ N~1/3 is the mean distance between them. The Debye length a is
defined by

Then a is the distance at which the Coulomb field of a charge in the plasma is
screened. If we have only one type of ion, with Z = 1, then

This can be interpreted as saying the mean distance between particles is small
with respect, to the Debye length i.e., the ion cloud around a charge must
contain many particles.
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so the above condition is
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We can consider a plasma collisionless when the effective collision fre-
quency v (= the reciprocal of the mean free time of a particle) -C w = frequency
of variation of E, B, Under these circumstances

Another condition under which the collisionless approximation makes sense
is this: let

(, = particle mean free path = 

L — distance over which the field varies (= "field wavelength").

Then if v -C j, the streaming term is dominant:

v • Vs/ 3> collision term.

These conclusions are established in [20].

5.2. Control of Large Velocities
We consider the relativistic case. Assume that we have several species with
masses ma and charges eQ, 1 < a < N. The relativistic velocity is

where c is the speed of light. Thus \va\ < c for each a,
The particle densities fa(t,x,v) satisfy

Given are /Q(0,x,v) = fao(x,v), E(Qtx) = EQ(X), B(Q,x] — BQ(X) satisfying
V • EQ = po, V • Bo = 0, / po dx = 0.

THEOREM 5.2.1 Let 0 < /Qo € C$; -Bo,-Bo 6 C2 satisfy the above con-
straints. Assume there exists a continuous function /3(t) such that for all x, a,
fa(t,x,v) = 0 for \v\ > 0(t). Then there exists a unique C1 solution for all t,

The proof in [9] is based on a representation for the fields which eliminates
the loss of derivatives suffered by solutions to the Maxwell System. We simplify
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the exposition by dropping the TT factors and taking c = 1, N = 1, ma — ea =
1. Then the system appears as

Traditionally one writes K = E 4- v x B for the force.
/ is constant on characteristics

whose solutions we write as

Hence

and so / remains nonnegative and bounded, provided 0 < /o < max/o < oo.

5.3. Representation of the Fields

THEOREM 5.3.1 Let f3(t) exist as in the hypotheses of Theorem 5.2.1. Call
S = dt + X]fc=i VkdXk • Then for i = 1, 2, 3, the fields admit the representations

where

For the fields Bl there is a similar representation; we need only replace uji 4- Vi
in each expression above by (u x {)),;. Here u> — r^Efr-

Proof. We put r = \y — x\. Note that, dyi [f(t — \x — y\,y, v)} — dyi f — Uidtf =
T i f , and that any Ti is a tangential derivative along the surface of a backward
characteristic cone. The idea is to replace the usual operators dt,di by Ti,S.
We can invert these:
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The summation convention is followed here. Now compute

In the integrand we have

Therefore

This proves Theorem 5.3.1

Proof of Uniqueness. Let (/W, J5*1), B^>) and (/(2), £(2), B&>) be two classi-
cal solutions of (5.4) with the same Cauchy data. Define

The middle term has been called Eg. The last term is by integration by parts

Now a lengthy but elementary calculation gives

The calculation for the B field is similar since



Here in the ES term we have integrated by parts in v, using the fact that Sf
is a pure v divergence. A similar representation holds for B. f has compact
support in v, so the expression 1 + v • u> is bounded away from 0. Moreover,
the fields are bounded by hypothesis. Adding these, estimating, and using the
support property, we get for t < T, with | • |o denoting the maximum norm,

Since E(2),B<2) and /(*> are bounded, we have on [0,T]

On the other hand, the equation for / above can be written as

Consider the characteristics of this equation, defined by the solutions of

Then / can be written as a line integral over such a characteristic curve of the
right-hand side —K • Vv/(2). Hence
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Subtracting the equations, we have (5.6), (5.10), p = f fdv, j = f v f d v and

Using the Representation Theorem 5.3.1, we can write

where
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Since VvfW is bounded,

We add (5.11) and (5.12) and apply the Gronwall lemma to conclude that
£ = B = / = 0, as desired. This proves the uniqueness assertion in Theorem
5.2.1.

5.4. Representation of the Derivatives of the Fields

THEOREM 5.4.1 Let (3(t) exist as in the hypotheses of Theorem 5,2,1. Then
for i, k = 1,2,3,

Here /, S f , S*2/ without explicit arguments are evaluated at (t — \x — y|,t/,v),
and r — \y — x\. The functions a. 6, c, d are C°° except at 1 + v • w = 0 and
have algebraic singularities at such points. Moreover, /ia,i_1 o(w, v) dw = 0.
Hence the apparently singular integral above (containing the factor \y — a:|~3^
is in fact convergent for suitably smooth f . There is a similar representation
fordkBt,

Proof, We put z — x — y in the field representation of Theorem 5.3.1 and then
apply d/dxk- There results

In the last term we integrate by parts in y, using the fact that Tj is a perfect
t/, derivative. Thus the last term is



THE VLASOV-MAXWELL SYSTEM 145

so c(u,v} is the kernel multiplying S2f. The last data term is lumped into
(dkE^o. Part of b(uj,v) is visible. The other part of 6(w, u) comes from the
S-part of the second term. The most singular term is the 7)-term in the first
expression; it is
(5.15)

The integral in ETT equals

The first term depends on data only, so is part of (dkEl}o. The second term
converges to

Since the v integral is over 
Also. / is pointwise bounded. Therefore the term involving d(u,i>) is 0(1).
(We remark that the integrals which appear here over w\ = 1 can be explicitly
computed.) Now in the last term of ETT we have

after a lengthy but elementary computation (cf. [9]).
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To show that Jjw|=1 a(u>,t>) du> = 0, write

where

Thus

Hence

First we compute

Similarly,

Now

It follows that
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Finally,
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The computation for B is similar (cf. [9]). The most singular term BTT also
has a kernel with zero average. This completes the proof.

5.5. Estimates on the Particle Density
We take f ( Q , x , v ) = fo(x,v) 6 C$, supp /o C { x\ < k,\v\ < fc}. The
characteristic ordinary differential equations are

Hence

and so 0 < / < max/o provided 0 < /o < max/o < oo.

Next, we claim that /(£, x, v) = 0 if x| > t + k. Indeed,

and hence \x\ > k + t implies

Now we turn to estimates on derivatives of the particle density. Let Df =
for any j. Then

and thus

Therefore

Thus
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so that

Now we define norms using

with similar expressions for B,
From (5.29) it follows that

A similar bound holds for D = -§— since
l/fi

for t<T.

5.6. Bounds on the Field
Recall that, by Theorem 5.3,1, the field E can be represented as

Therefore

and -^- is bounded. Therefore



since

For ES we use Sf = —K • Vvf — —Vv • (Kf) and integrate by parts in i;:

so that
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By hypothesis we have |v| < /?(£) < @T, say, on supp / for 0 < t < T. Then

Hence with r — \y — x\

The u-gradient factor is bounded by the support hypothesis (by CT, say).
Therefore

A similar estimate holds for B. Therefore by the Gronwall inequality we obtain

5.7. Bounds on the Gradient of the Field

THEOREM 5,7.1 Let log* s = &

Then

for t < T.

Proof. Write
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where the various terms are given in Theorem 5.4.1.

The most singular term is

Now a(u;,t)) is bounded for \v\ < @T, Thus for any d, 0 < d < t,

and

because Therefore

Hence

Take to get

(Here we are assuming that d = j jVx / j JQ l < t; if not, a simple argument yields
(5.45) in this case as well.)

For the S/-~term, we integrate by parts in v:

By the bounds already known, this term is dominated by CT-
For the 52/-term, we write
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Now

III satisfies the same bound as //. For IV, we split dXjf again:

In IV, we integrate by parts in v:
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Recall that Thus

Now

Therefore

respectively.

Also, since



This implies that \f(t)\i is bounded, and hence |K"(t)ji is also bounded. This
concludes the a priori estimations; when these techniques are applied to the
iterates, as will be done next, Theorem 5.2.1 results.

5.8. Proof of Existence
For simplicity let us take smooth initial data fo(x, v) in C|, EQ(X) and BQ(X} in
C3 and Ei(x) and Bi(x) in C2. We recursively define the solutions /^(t, x, v),
£(")(<, x), £(")(<, x) as follows. First, we will define /(°> (<,£,«) = /o(x,u),
E^(t,x) = EQ(x), BW(t,x) = Bo(x). Given the (n- l)st iteration, we define
/(") as the solution of

This is a linear equation for a single unknown (with C2 coefficients which, as
we show below, are uniformly bounded in C1 on 0 < t < T) of the form

Therefore

Put then

By an application of the Gronwall lemma, we deduce the Theorem.

Putting all of these estimates together, we can write

Now by repeating the same estimates for the B field, we obtain
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Combining these expressions, we get



THE VLASOV-MAXWELL SYSTEM 153

with initial condition /o where a and /o are C2 functions. Thus /(") is a C2

function provided Jf^""1) and B^-1) are C2. Now /(") is constant along the
characteristics of (5.59), the trajectories of the system

Therefore /(n) has compact support in t>, so that

are well-defined as C2 functions. Then, given /(") and hence p(n) and j(n), we
define £Xn) and S^n) as the solutions of the system

with initial data EQ(X), Ei(x), BQ(X), Bi(x).

LEMMA 5.8.1 If fW is a C2 solution of (5.59), and £"(«), £(") are #ie
solutions of (5.63) then £X") and B(n^ are. also C2 functions.

Proof. Since the right-hand sides of (5.63) are C1, the solutions are C1. To
show they are C2 we proceed by induction on n. The representation Theorem
5.3.1 can be employed to give

where Eo(t, x) is the solution of the homogeneous wave equation with the same
Cauchy data,

Now Eo(t,x) is C2. In the second integral appears the expression

so that we can integrate by parts with respect to v. By the induction hypoth-
esis, EC""1) and B^"-1) are C2. Therefore £<") is C2, and the same holds for
B(n). This proves Lemma 5.8.1.

and
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We claim that the estimates (5.32) and (5.36) are valid for /(n), £?(n) and
B(n), uniformly in n. To prove this we simply repeat all the previous estimates
with superscripts (n) or (n — 1). Thus it is clear that

and, as in (5.32),

The analogue of (5.36) is

for 0 < t < T with constants c depending on T. Iterating (5.66) we get

Thus the fields J5(n), £?(") and the density /(") are pointwise bounded uni-
formly in n. Now the Gronwall lemma applied to (5.65) gives

The analogue of (5.55) is

Putting (5.68) into (5.69). we deduce

since log* s < max{l, 1 + Ins}. This estimate is iterated as above to give a
uniform bound on ||£Xn)||i + ||£^n)||t. From (5.68) follows a uniform bound
for H/<n>!| i , for all n and for 0 < t < T,

With these estimates, together with compactness, it is easy to pass to the
limit. But to get optimal results, it is more convenient to show directly that
the sequences are Cauchy sequences in the C1 norm. We fix two indices m and
n. For j = 0, 1 let
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Exactly as in the derivation of (5.11) we have

Exactly as in (5.12) we have

using the bounds already known, c depending on T and 0 < t < T. We
substitute (5.71) into (5.70) and interchange the order of integration to obtain

with a different constant c. Iteration of (5.72) yields

Therefore £Kn), B(") and, from (5.71), /<"> are Cauchy sequences in the C°
norm so that, they converge uniformly.

We claim that the same is valid in the C1 norm. Let d denote any first
derivative of E arid consider any component i. We split dE^ and dE(m^ as
in the process given in Theorem 5.7.1, and then subtract these expressions.
First, the TT term is written as in (5.40) - (5.42) and estimated as

The TS and ST terms are written as in (5.46) and estimated by

We break up the SS term into several pieces as in (5.50). Following the same
procedures and using the known bounds in C1, we deduce

where
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Thus

Now we estimate /[""(£). For this purpose, recall the characteristic equa-
tions

where K(n~l) = IJC"-1) +vn x B^n~^ is evaluated at time s. Denote the solu-
tions of (5.61) which assume the initial values x,v when s = t by xn(s),un(s),
respectively. Below we suppress the dependence of IC(n) on s. From the first
equation in (5.61) we get

since the real function p \-* p(l+p2)""1/2 is has its derivative bounded by unity.
The second equation in (5.61) gives

since each KW has uniformly bounded Cl norm. Moreover, we also have
|(/f(n-i) _ K"("l-i))(xm)J < 6nm, say, where 6nm —* 0 as n,m —* oo uniformly
on [0, T] by the known bounds. Thus

By Gronwall's inequality, the sequences (xn(s)}, {vn(s}} converge uniformly
on 0 < s < T. The convergence is also uniform with respect to the parameters
t, x, v where 0 < t < T, x € R3, u € R3.

To estimate /i"n(t), we only discuss x-derivatives 9/ for simplicity. Dif-
ferentiating (5.59), we have

Integrating along characteristics, we can write
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The same equation is written at stage m and the results are subtracted; this
gives us the estimate

By the hypothesis on /o, the first term tends to zero as n, m —> oo. Therefore
we can write

where enm —> 0 as m, n —> oo, uniformly for 0 < s < T, 0 < t < T, x €
R3, t> € M3. The first term in the last integral tends to zero uniformly on
[0, T] as a consequence of (5.74) and the known C1 bounds. The second term
in the integrand is dominated by cb™~l'n~ (s), and the last by cf™n(s). W
know that the v derivatives of the difference can be estimated in terms of the
x derivatives, as in (5.31). Therefore

where e'nm —>• 0 uniformly on [0, T] as m, n —» oo. The function

then satisfies

so that

Using this in (5.75), we get
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with a different constant c (depending on T), and where e'nm —> 0 uniformly
on [0, T] when n, m —> oo. Substituting (5.76) into (5,73), we arrive at the
inequality

again with a different constant c (depending on T) and another expression 6nm
which tends to zero uniformly on [0, T] when n, m —* oo. We can easily iterate
(5.77) to get

for m, n > 1. Therefore £"("), £?(") and, from (5.76). /(n) are Cauchy sequences
in the C1 norm.

Call the limits E, B and /. respectively. Then £<n) -> E, BW -» B and
/(") -» / uniformly for t € [0,T], x € R3, v € K3, together with all their first
derivatives. Passage to the limit in (5.59) yields the Vlasov equation. Passage
to the limit in (5.63) yields the second-order wave equations for E, B taken
in the sense of distributions with charge and current given by p — / / dv, j =
/ vf dv.

This proves Theorem 5.2.1 for smooth initial data. If /o, E\ and B\ are
merely C1 functions and Eg and BQ are merely C2, we approximate them
by smoother (say C°°) functions and pass to the limit as in the proof just
completed. The details are almost the same as what we have already done, but
a little simpler. This completes the proof of Theorem 5.2.1 for the simplified
case of a single species.

Of course no plasma is composed of a single species. The simplest way to
study a real problem is to let / denote the density of electrons, and to introduce
a known "background" ion density n(x), and to write the charge density as

We require neutrality which is the condition that the average value of p is zero,
i.e.. that

Calling 6 an upper bound for the C1-norm of the field, we thus have
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(recall that the integral of / over R3 x R3 is invariant). This change introduces
some extra terras involving n into the earlier calculations, but each such term
is harmless and can be easily estimated.

More accurately, we should study several species with densities /« which
satisfy (5.3). Each velocity of propagation is different

Each /a remains pointwise bounded. In the representations for the fields and
their derivatives, the source terms are replaced by

(Recall that ea is the charge of particles of species a). Finally the differences
fS — fS1 are estimated for each a separately. These are the only modifications
necessary to complete the proof for several species.

In [11] the following generalization is established. The hypotheses of The-
orem 5.2.1 require compact support in v. The result remains valid under the
following condition: on every interval [0, T],

Thus some particles may have unbounded momentum.
The classical (non-relativistic) Vlasov-Maxwell system may also be treated

by the same method. Notice that in the decomposition of derivatives leading to
the representation of the field (Theorem 5.3.1), it was essential that expressions
such as l + v-ijj could be bounded away from 0. In the nonrelativistic problem,
the corresponding expression is \-\-v-u). Thus singularities may appear on a
larger set of v's, and at finite momenta as well. Hence smooth global existence
in the nori relativistic case seems problematic, at least by this approach.
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Chapter 6

6.1. The Small-data Theorem

In this chapter we consider small-data solutions to the Cauchy problem for the
Relativistic Vlasov-Maxwell system (cf, [38]). Assume that we have several
species with masses ma and charges en- 1 < a < N. The relativistic velocity
is

where c is the speed of light. The particle densities fa(t,x,v) and fields E, B
satisfy

Given are /Q(0,x,v) = fao(x,v), E(Q,x) — EQ(X), 5(0, a:) = BQ(X) satisfying

In Chapter 5 a sufficient condition was given under which smooth global
solutions are known to exist. Namely, given any T > 0, a bound on the v-
support of the particle densities fa(t,x,v) for all x, a, t < T is sufficient. We
show here that if the initial data of the fields and of the {/<*} are small, such
a bound may be achieved. This material is essentially the content of [18].

THEOREM 6.1.1 For each k > 0, there exist constants en > 0 and /? > 0
with the following property, Let fao(x,v) (a = 1,2, . . . , N) be non-negative
C1 functions with supports in {\x\ < k}, {\v < k}. Let EQ(X), BQ(X) be C2
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for all t > 0,x eR3.

The key step in the proof is to show that the paths of the particles spread
out with time. Hence only a small set of momenta (of diameter O(l/t) in
momentum space as t —> oo) could reach a given point (t, x) from the support
of the initial data. Then p(t, x), which is an integral over a set of momenta of
volume O(t~3), is itself of that order. Since the particle paths are given by the
equations

the particles would move in approximately straight lines if E and B were small.
Thus we must also prove that the electromagnetic field decays as t —» oo.

In the case of the Vlasov-Poisson system there is no explicit time depen-
dence in the field equation (B = 0, Ati = p, E = Vu) so that Bardos and
Degond [1] were able to iterate in a space where E decays in L°° at the rate
O(t~2) and VE at the rate O(£-5/2). For (6.1), the field satisfies inhomoge-
neous wave equations like

So the best possible L°° rate of decay for the field (with general functions p, j)
is O(t~1}, which is far too slow for the methods of [1] to succeed. Horst [23],
on the other hand, imposed conditions as t —» oo designed to allow more rapid
decay of the field. For the present problem with arbitrary initial conditions
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functions with supports in {\x\ < k} which satisfy the constraints

If the data satisfy

then there exists a unique solution of (6.1) for all x € M3 and all v € K3 and
all times £, 0 < t < oo, with /Q, £", B & Cl having initial data fao, EQ, BQ such
that

Furthermore, E(t,x) — B(t,x) = 0 for \x\ > ct + k. For all £ > Q, there exists
£o > 0 such that if (6.3) holds, then
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and a magnetic field, we introduce a weighted L°° norm for the field, as was
pioneered by John [25]. We use the weight.

By causality we know that \x\ < ct + k on the support of the field, so that the
second factor simply introduces an extra decay factor of t~l inside the light
cone. In order to exploit this extra factor when solving (6.1), one must show
that \x\ stays well inside the cone. Since x = va this is true if the momenta v
remain bounded. This means that the Vlasov and Maxwell characteristics are
well separated; that is, the system (6.1) is effectively strictly hyperbolic. Thus
we have come full circle to a condition on the behavior of the momenta. To
carry out the process we also need to estimate the spatial derivatives of the
field, for which a similar weight function is used.

6.2. Outline of the proof

The main structure of the proof, as exposed in the last chapter, follows [15].
In particular, uniqueness was established, and for existence the following con-
struction was utilized. For given functions E^(t,x) and B^(t,x), we define
E(n)(t,x),BW(t,x) and f^n)(t,x,v) inductively as follows. Given the (n-l)st

iteration, we define /« as the solution of the linear equation

For simplicity we have set the speed of light equal to unity (c = 1). Then we
define

Finally we define £*("), B(n1 as the solution of Maxwell's equations

with data E^(0,x) = EQ(X), B^(0,x) = BQ(X).
A consequence of Theorem 5.2.1 from the last chapter is that if there exists

/? > 0, independent of t, x, a and n, such that

then (f^n\ £(">, £(")) converge to a C1 solution (fa,E,B) of (6.1). The rest
of this chapter is devoted to proving (6.10) under the "smallness condition"
(6.3).
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We abbreviate the field as K(t,x) = the pair ( E ( t , x ) , B ( t , x ) ) . Define the
norms

and \\K\\ = \\K\\o + \\K\\i. Let e > 0 and let

Given K € /C, we define the characteristics as the solutions X = Xa(s, t, x, v),
V = Va(s, t,x,v) of the ordinary differential system (6.6), that is,

with the "initial" conditions Xa(t,t,x.v) = x and Va(t.t,x,v) — v.
Next we define

Thus fa(t,x,v) is the solution of the Vlasov equation,

with the initial condition /Q(0,x,v) = fao(z,v). We define p and j as in (6.9)
and define K* — (E*,B*) as the solution of Maxwell's equations

with the initial conditions £J*(0, x) = EQ(X), B*(0,x) = BQ(X).
Thus the iteration scheme may be summarized as K^ = ( K ( n ~ 1 ) ) * . We

begin the scheme by defining AT(°) = 0 (that is, E^(t,x) = J3(°)(i,x) = 0).
We shall prove the following two theorems.

THEOREM 6.2.1 If K € K, and e is small enough, then there exists /3 > 0
depending only on fc,e and £Q such that fa(t,x,v) — 0 for \v\ > 0 and for all
a,x,t.

THEOREM 6.2.2 If K e fC and s is small enough, then K* 6 AC.
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Proof of Theorem 6.1.1. We define the sequences fa , KW as above. Since
/T(°) e 1C, Theorem 6.2.2 states that /f(n) <E K, for all n. By Theorem 6.2.1,
/in) = 0 for \v\ > 0. By the work from Chapter 5 ([15]), /£°,/f(n> and their
first derivatives converge pointwise to / and K. Therefore K € 1C. Hence (6.5)
is valid, as well as

for all t > 0, x e K3. As was mentioned earlier, (/, K) is a solution of (6.1).

6.3. Characteristics

The characteristics are curves defined by the solutions to (6.13) and (6.14).
They exist as C1 functions of s,t,x,v for some time 0 < £ < T * , 0 < s < T *
because E and B are Cl functions. For as long as the characteristics exist, we
define

that is, the largest momentum up to time t emanating from the support of
faQ. Then P(i) is a continuous function of t for 0 < t < T*.

Before estimating P(t) we motivate its definition. In this brief section we
will drop the dependence on the species through the parameter a. By the
above definitions, we have

Set y = X(0,t,x,v), w = V(Q,t,x,v). Then these equations give us

Similarly, by uniqueness, one has

Since / is constant on characteristics, we have

so that the support of / can be calculated via
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This explains the extent of the u-support of / as well as the definition of P(t),

LEMMA 6.3.1 //O < s < t and fa(t,x,v) ^ 0, then

Proof. For 0 < s < t assume that

and let

Then |yi| = \Xa(Q,t,x,v)\ < k and |wn| = \VQ(Q,t,x,v)\ < k. We have from
the second part of (6.18)

Hence \v\ = |FQ(i,0,yi,u>i)| < P(t) and

where, assuming ma — ea = 1 for simplicity,

But

which implies Lemma 6.3.1.

LEMMA 6.3.2 If K £ K, and if e is siifficiently small, say e < e\, then the
characteristics Xa(s), Va(s) exist for all s (T* is infinite) and P(t) is bounded,
say P(t) < (3. Here e\ and 0 depend only on k. Therefore, if fa(t,x,v) ^ 0
for some (a,t,x), then \v\ < /3.

Proof. We have for t > 0, writing X(s) = Xa(s^t,x,v) and V(s) =
VQ(s,t,x,v),

So
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by Lemma 6.3.1, provided \Xn(Q,t,x,v)\ < k and \VQ(Q, t,x,v)\ < k. Let
y = Xa(0,t,x,v) and w — Va(Q,t,x,v), so that x = Xa(t,Q,y,w) and v —
Va(t,0:y,w). Then

for \w\ < k and \y\ < k. Thus

If \\K\\o is sufficiently small (depending on k), this implies that P(t) is a
bounded function of t. (See the argument in Chapter 2 surrounding Fig. 2.1).

Proof of Theorem 6.2.1. By Lemma 6.3.2, the characteristics exist for all
time. If fa(t,x,v) ^ 0 for some (x,t,a,v), then, in view of (6.15), \y\ —
\Xa(0, t, x, v)\ < k and \w\ = \Va(Q, t, x, v)\ < k. By the definition of P(i),

LEMMA 6.3.3 If £ is sufficiently small, there is a constant c > 0 such that

for all t, x, v and w such that fa(t, a:, v) ^ 0 and fa(t, x, w) ^ 0.

Proof. For simplicity, since a is fixed, we drop the subscript a. Following
Horst [23], we rewrite the characteristic equation for dv/dt in terms of u, as
follows:

Since (l — \v\2)1/2 — m(m2 + |t;|2)~1/2 < 1 (the derivatives of J can be estimated
as

where r = \x\, and

For the characteristic passing through the point (t,x,v), where f ( t , x , v ) ^ 0,
we abbreviate X ( s ) = X(s, t, x, v) and V(s) = V(s, t, x, v). Then we substitute
s for t,X(s) for x and V(s) for v to obtain
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by Lemma 6.3.1.
Now let t, x, v and w be fixed so that f ( t , x, v) ^ 0 and f ( t , x, w) ^ 0. For

brevity we denote Xi(s) — X(s,t,x,v) and Xz(s) = X(s,t,x,w). By (6.13)
and (6.20) we have, for 0 < £ < t,

In the first part of this expression, we switch the order of integration, obtaining
the factor (s — £) < s. In terms of

we therefore find the estimate

After changing variables £ — » ( £ — £), we apply Gronwall's inequality to obtain

Hence bv (6.21) and (6.22), we have

where
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We choose e so small that /exp/ < 1/2, recalling that \\K\\ < e. Choosing
£ = 0, we therefore have

Therefore

Now v = mv(l — lul2)-1/2 , so that

for each i and j. Since / (« ,x,u) ^ 0, we have \Xi(0)\ < k and |Vi(0)| < fc,
whence |v| < P(<) < /? by the second part of (6.17) and Lemma 6.3.2. Similarly
\w\ < (3. Therefore

By (6.23), we have \Xi(0) - X2(0)| > ct\v - w\.
A brief remark is in order. If one attempts to remove the support assump-

tion on /o in v, a technical problem appears at exactly this juncture.

6.4. The Particle Densities

We assume that e is small enough for the validity of Lemmas 6.3.2 and 6.3.3.

LEMMA 6.4.1 There is a positive constant c such that

for all t > 0, where ||/o||o = sup,., x ,, \ f a o ( x , v ) \ .

Proof. We recall that fa(t, x, v) = fao(X, V), where X = XQ(0, t, x, v) and
V - V a ( < d , t , x , v ) . We have \X\ < k and \V\ < k so that |u| < /3 by Lemma
6.3.2. So Lemma 6.4.1 is valid for t < I . Now the integration in f fa dv ma
be taken over the set A = {v : \X\ < k}. By Lemma 6.3.3 the diameter of A
is at most 2k/(ct), and so its volume is at most O(£~3). Therefore f jadv is
at most c||/o||o£~3. The last inequality follows from the vanishing of fa(t,x, v)
for x\ > t + k.

LEMMA 6.4.2 There is a positive constant c such that

and

where



where Vxf and Vvf are evaluated at ( s , X ( s ) , V(s)). The last kernel is at
most c(l -f s)~2, as above. Since it is integrable, an application of Gronwall's
inequality yields
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Proof. Write La = dt+va-Vx+(E+vaxB)-Vv, so that the Vlasov equation
is La fa = 0. Again we drop the subscripta. WriteX(s)=X(s,t,x,v)and
V(s) = V(s,t,x,v) as before. Fix a coordinate Xj and let df = df/dxj for
brevity. Then

Thus

Integrating from 0 to T < t, we have

so that

by Lemmas 6.3.1 and 6.3.2. We write this for brevity as

Integrating as above, we have

Now let Df = df/dvj. Then
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We now have (6.24) and (6.25), where /(«) = (1 + s)~3 ln(2 + s). Substituting
(6.24) into (6.25) we have

where GO = ||/o||i- Therefore

Since (1 + s ) I ( s ) is also integrable, we deduce by Gronwall again that g(r) is
bounded. By (6.24), |VX/| is also bounded for 0 < r < t. The bounds are
independent of T, t, x and v. Putting T = t we conclude that

and

6.5. Estimates on the Fields

As we showed above, the characteristics, defined by (6.13) and (6.14), exist
globally. Because \dXfds\ = \V\ < 1, and fao has support in {\x\ < k},
the particle density fa(t,x,v) defined by (6.15) has support in \x\ < t + k.
Therefore so do j and p. Therefore E* and B*, the solutions of Maxwell's
equations with these sources, also have supports in \x\ < t + k. In order to
prove Theorem 6.2.2, it remains to show that \\K*\\ < £ for e and eo sufficiently
small.

LEMMA 6.5.1 There is a constant c > 0 so that

for all K G K. provided £ is sufficiently small.

Proof. We begin with the representation formula for E* from Chapter 5,
i.e., from Theorem 3 of [15]; namely,

where the terms are given explicitly as follows:
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where fa = fa(t-\y-x\,y,v), E = E(t-\y-x\,y), B = B(t-\y-x\,y), u =
(y — x)/\y — x\ and Sa — Qt + va • Vx from the last chapter. Next, we have

The term E% is the sum of the solution £(t,x] of the homogeneous ("free")
Maxwell equations with the same initial data and of the boundary term arising
from integration by parts in y (using the fact that Tj is an exact derivative).
The latter involves the expression

(see the proof of Theorem 5.3.1 where the expression a, is denned). Therefore

Now E* is easy to estimate. Both of its terms have supports in \t — \x\\ < k
because /ao(y, u), £b(y) and Bo(y) have supports in |y| < k. Furthermore, both
of them possess a factor t~l. Therefore we can replace t~l by (t + \x\ + 2k)~l,
and we can insert arbitrary factors of t — \x\ + 2k. Hence

As for the main terms Ej- and Eg, we note that the kernels are bounded
because |t>| < /3 (by Theorem 6.2.1) and |u?| = 1. Thus

where ip — 1 for \y\ < t — \x — y\ + k and <p — 0 for \y\ > t — \x - y\ + k,
since /a(r,y,u) = 0 for |y| > T + k and J/a(r,x,v)du < c||/o||o(l + r)"3 <
CEQ(T + |y| + 2k)~3 by Lemma 6.4.1. Similarly

where
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By Lemma 6.5.2 below, we can reduce these triple integrals to double integrals:

where </? = 0 for A > r + k, a. = r — t + T\. b ~ r + t — T, r — |x|, A = \y\ and

T = t-\x-y\. It suffices to show that \E^(t:x)\ < ceo(t+r+2k)~l(t--r+2k)~l

and \Eg(t.x)\ < ceo\\K\\o(t + r + 2k)~1(t - r + 2k)-1, plus the same estimates
for B*(t.x), which are very similar.

Consider the integral in (6.30). We estimate (r + \ + 2fc)" ]A < 1 an
(T - X + 2k)- V < A,-1 - Denote by

The first integral is at most cr(t - r + 2k)-l(t + r + 2k)-1. In the second one.
we use t - T < r and 2r + 2r + 4k < 2(t + r + 2 k ) , so we get at most

which is also less than cr(t — r + 2k)~l(t + r + 2k)~l, since r < t + k.
The integral in (6.29) is also broken up at r = s(t — r). For T < s(t — r),

we write A < b — r + t — T < 2(t — T) in order to reduce it to one of the
integrals already estimated. On (lie other hand, for r > s(t - r), we estimate
A < T + A + 2k to obtain

since r < t + k. Thus each integral in (6.29) and (6.30) is dominated by a
constant times (r(t + r + 2k)-1 (t - r + 2k)'1). This establishes the required
estimates for E* and essentially completes the proof of Lemma 6.5.1 since the
estimates for B* are identical.

Then the integral in (6.30) is less than



Again the kernels appearing here are bounded because \v\ < 0 by Theorem
6.2.1 and |cj| = 1. Hence B^ and Bg are estimable exactly as in (6.29) and
(6.30).

LEMMA 6.5.2 For any continuous function g(r,X) of two real variables,
and h(a} of one real variable,
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Indeed, from Theorem 3 of [15], using the methods of the last chapter, we
have (for a single species, say) the representation

where B* is given by a formula similar to (6.27) (and hence depends only on
the data), and

where the integration on the left, is over a ball in R3.

Proof. The left side can be written as

So it suffices to show that

That is, for any function /,

By symmetry we may take x — (0,0, r). Then
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Changing variables now by A = (r2 + cr2 + Ira cos y)1/2, we obtain the desired
result.

6.6. Estimates on Derivatives of the Fields
In this section we shall estimate ||K*||i. Lemma 6.6.1 (below) together with
Lemma 6.5.1 will provide the bound

Therefore if \\K\\ < e, if e is sufficiently small for the validity of the previous
estimates, if e < 1/2 and if EO < £/(2c), then \\K*\\ < e. As remarked earlier,
this will prove Theorem 6.2.2 and therefore Theorem 6.1.1.

LEMMA 6.6.1 There, is a constant c such that

Proof. We differentiate the representation formula (6.26) for E*, repeating
the technique given in the previous chapter. Thus the derivative d/dxk of the
ith component of E* is

integrated over \y — x\ <t and over all v € M3. The derivative dk is broken into
TJ and S components as before. Each integration by parts in the tangential
variables TJ brings in a term at the base t = 0 of the cone. Repeating the
method of the last chapter (which is Theorem 4 of [15]), we write the result as

The various terms are given as follows. (For notational simplicity, we drop the
subscripts a and take m0 = e0 = 1).
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where the kernels a, b and c are found by the methods of the last chapter. The
integration ranges over \y — x\ < t and v £ R3. The expression Az is the sum
of all the terms involving the initial data, namely, with u? = (y — x)/\y — x|,
(6.33)

where d and e are kernels which once again are bounded for bounded v (see
the proof of Theorem 5.4.1). These integrals come from the passage from ET

to ATT, and from E$ to AST, respectively. However in the passage from ET

to ATT we also pick up the term

because of the singularity \y — x\~2 at the vertex of the cone where y = x. Now
we shall estimate each term in (6.32).

The "vertex term" is estimated using Lemma 6.4.1 as

which is more than sufficient. The "base term" Az has several parts. One is
an integral involving derivatives of EQ and BO up to order two, obtained by
differentiating (6.28). Since the integration is on the sphere \y — x\ — t and
since |y| < fc, it has support in \t — \x\\ < k. Also, it is of the order O^"1).
Hence it is O((t + \x\ + 2k)~l(t - \x\ + 2k)-2). The other parts of Az are
the derivatives of the last terms in (6.27), (6.28). They are O(t~l) times an
integral over \y — x\ = t, and so are estimated in the same way as the first part.
The integrals appearing in (6.33) have the same general form. In the last term
in (6.33) appears the expression 5/(0, x,v) — — (Eo + v x BQ) • Vv./o, which
once again has its support in |x| < k. Therefore

The kernel a(w, v) in ATT is bounded because \v\ < (3. We break ATT up
into two parts. The part over the "base" or "shell" 1 < \y — x\ < t is less than

where a — \r — t + r\, b = r + t — T and r = |x| as before, by Lemmas 6.4.1
and 6.5.2. The last integral is estimated as follows. (Assume t > 2 or else the
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estimate is trivial.) It is broken into the intervals [0, t/2] and [t/2,t — 1]:

since r < t + k. This takes care of the "base" part of ATT.
Because of the singularity at y = x, we must use the fact that the kernel

a(u,v} has zero average on u| = 1. Therefore the "tip" of ATT, that is, the
integral over \y - x\ < 1 is equal to

We use the Mean Value Theorem to represent the difference, and then use
Lemma 6.4.2. We note that the integration ranges only over the set-

where [x, y] is the line segment joining x and y and where T — t — \x — y\. By
Lemma 6.4.1, this set has diameter at most cj(r + 2). Therefore the integral
is bounded by

which is more than sufficient for our purposes. This completes the estimation
of ATT •

Next. ATS + AST is bounded by

where (f> = 0 for A > r + k, as we did several times before by the definition of
||A"||o and by Lemmas 6.4.1 and 6.5.2. To estimate this integral, we note that

since r < t + k. On the other hand,
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(r-A-f 2fc)~V < fc-1 andr + A + 2fc > r + a + 2fc > t-r + 2k. So the integral
is less than

by the previous estimate of the integral in (6,29).
It remains to estimate ASS- To do this, we decompose it into five terms as

in Chapter 5 (which is Eq. (66) of [15]) as

The first is

by Lemmas 6.3.2, 6.4.1 and 6.5.2 again. The second is

The integral in I is less than the integral in II, so it suffices to estimate the
latter. In the integral in II we replace ln(r + A + 2fc) by \n(t + r + 2k) and A
by T + A + 2fc in order to obtain the upper bound

We replace \t — r\ by t — r to obtain at most

as desired.
The third term in ASS is
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where djt = (6jg — VjV()(l + |t;|2)~1/2c(u;, v) is bounded. Hence III is estimated
exactly as II was. Next, the fourth term

is estimated exactly as I was. The fifth term is

As above, the integration ranges over the ball \y — x\ < t. We integrate by
parts in Tp, obtaining on the one hand the term on \y — x = t,

which is treated just like the integrals in Az. On the other hand, we also obtain
terms bounded by

Of these resulting integrals, the first one is estimated just as II was, and the
second one is estimated just, as ATS + AST was. This completes the proof of
Lemma 6.6.1.

We conclude this chapter with a brief description of the generalization of
this result to the "nearly neutral'' case. Details can be found in [10]. In this
reference the same regularity and support properties are imposed on the initial
data. Moreover, the same smallness conditions are imposed on the initial fields
However, the individual plasma densities may be "large'. provided that they
"almost cancel" in the following sense. Let

Then the smallness condition on the plasma densities may be expressed by
saying that the expression

is small in the Cl sense. Thus, cancellation is allowed, whereas the result in
the current chapter requires that each individual plasma density be small.
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Chapter 7

VELOCITY AVERAGES: WEAK SOLUTIONS
TO THE VLASOV-MAXWELL SYSTmE

7.1. Sketch of the Problem

For many nonlinear problems, one uses the following steps. Firstly, a conve-
nient approximation is chosen. This approximation scheme should satisfy the
dual criteria that the modified problem is "easily" solvable, and that it retain
the expected a priori bounds. Then one uses compactness to pass to the limit
(in the sense of distributions) in the modified problem. What follows appeared
originally in DiPerna-Lions [3]; we also use the approach in Kruse [14].

Let compatible data /0 > 0, EQ, BO be prescribed at t = 0. Let 6f be the
standard Friedrichs mollifier. We will consider two approximation schemes.
Firstly, consider the modified system

Below the function v(x] represents a given neutralizing background density,
and p = 4?r / / dv - v(x)\ j = 4?r / vf dv\ jf = 6f * j. By the work of Horst
[11], an initial-value problem for this system possesses global smooth solutions
for fixed « > 0. Let (/". En, Bn) be such an approximate solution correspond-
ing to 6n. (We abuse notation with the mollifier). We have

Assuming fn(Q.x,v) > 0, we have by weak compactness a subsequence {rik}
such that

185
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Thus dtfn —- dtf in X>'((0, oo) x R3 x BR), etc. So we can easily pass to the
limit in the first two terms of the Vlasov equation. The same remark is valid
for the first-derivative terms in the Maxwell system.

In order to study the convergence of the nonlinear term in (MVM), let
<j) € £>((0, oc) x M3 x R3). We want to examine

Here we are faced with a familiar problem, namely of passing to a weak limit
in a product expression, each factor of which converges weakly. If we take
<j> = 4>(t,x)ty(v) (which is enough by density) we need convergence of e.g.,

Here ^ = Vv^. If we knew strong convergence

for arbitrary T, R, we are done. This is exactly a consequence of the velocity
averaging smoothing mechanism, cf. [7], [6] and [3]. We will deduce that
jn —»j in V from strong L1-convergence

for continuous t/> with i/>(i>) = o(|v|2) as \v\ —> oo.
There is another regularization, due to Lions and DiPerna [3]. We take

/o > 0, /5 € £>(R6) such that

Take Ef
0, Bf

Q e D(R3) with

Consider (with c — 1)
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then for ̂  e P(E3), / f ( t , x, v)$(v) dv € Hl/2(R x R3). Thus averaging
in velocity improves regularity in the space and time variables. For Vlasov-
Maxwell we need g to be a u-derivative. If g = Y^\a\<m D?g<x with ga €
L2(E x E3 x E3), then the conclusion is

THEOREM 7.2.1 Let m e N, R e (0,oo), V e T>(BR). Let / e L2(E x
R3 x BR) satisfy

where ga e L2(R x E3 x BR) for all a, \a\ < m. Then there exists a constant
c > 0 depending on m, R, ip such that

Proof. We will give the proof in the case of m = 1 only. Extend / to
0 outside of [0,T]. Let (r, £) be the dual variables of the Fourier Transform
/ t-» /. Then

Thus the same basic bounds hold.

7.2. The Velocity Averaging Smoothing Effect
The first such results (cf. [1], [6], [7]) asserted this: if / e L2(E x E3 x E3) is
a solution of

and

Then f< > 0, // \f*(t,x,v)\P dvdx = J \fa\Pdvdx for any p, I < p < oo,
and
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Define

We can assume that |r| < R\£\+2K. Indeed, let v € BR. Then |r| > R\£\ + 2K
implies |r| > \v\\£\ + 2K > \v-£\ + 2K > \r\-\T+v£\ + 2K, i.e., \T+V-£\ > IK,
and £(• • •) = 0 there. Thus we can write (with A = \v\\£\ cos 0)

Let C 6 P(R); C = 1 on [-1,1]; supp C £ (-2,2); 0 < C < 1- We split the
integral / as follows:

This comes from the Fourier Transform of the equation (7.13):

The parameter K will be chosen later.
For /i we have

The ^-integral /^ is less than

The integrand is nonzero for
Therefore
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Hence

For /2, we use the equation (7.18) and integrate by parts:

Thus with

Now by direct computation,

For H itself we have \H\ < *aB|(r"|l^l|1 Cl as in the first term above. Thus for
\a\ = 0 or 1 we have

(switch to spherical coordinates, and then put A = |f||£| cos#)
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This bound can be improved on the set where (1 — £) 7^ 0: if we also assume
that \r\ > R\£\ + IK > R\£\, then we have

Therefore

It follows that

When |£| < 1 we take K = 1. Then

When |£| > 1, we take K = \£\1/2. Then

Recall that /(r, £) = f/(r , £,v)ifj(v)dv, and that s = 1/4 when m = 1. Thus

Write J = Ji + • • • + ./s, where
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Abbreviate $(r,0 = ||/(T,£,-)||2 + \\g(r^,-)\\2. Now

Recall that K = j^1/2 when |£| > 1. In the first term, |r| < R\£\ + 2|£|1/2 <
(R + 2)\£\ in |̂ | > 1. Thus |r|1/2|^|-i/2 < CR Jn the second term,

Thus

For J-2 we have

The first term vanishes because R + 2 < |r| < R\£\ + 2 which implies |£| > 1.
a contradiction. For the second term, we have

Thus

For Jy we have simply
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In J4 we have |£| > 1, hence

Now

because K = |£|*/2 in this case.
Lastly, for Js we write

Collecting all such terms, we get

This proves Theorem 7.2.1.

7.3. Convergence of the Current Density

THEOREM 7.3.1 Let

be classical solutions of (MVM) such that

For T > 0 arbitrary let fn -- / in Z,2((0,T) x M3 x R3)  through a subsequenc
{nk}. Let $ e C°(M3) satisfy \^(v}\ - o(|v|2) as \v\ -> oo. Then for every
S < oo,
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Proof, / > 0 a.e. because for all bounded measurable sets A C (0, oc) xR3 xR3,

Thus by Fubini's Theorem, the integral / /(-, -, v)ip(v) dv belongs to ̂ ((Q, T) x
Bs).

To get the Ll convergence we proceed with several steps.

Step 1: Let i/j e £>; assvime also that /" is bounded in L°°((0, T) x R3 x R3).
We have dtf

n + v • Vxf
n = VtJ • g%, where

Similarly, for any measurable set A C (0, T),

Hence f f f \ v \ 2 d v d x < €3 a.e. t € (0,T), and thus

Take & € E>(R), C« = 1 on [5,T], supp C« C (§,2T) , 0 < C < 1- Put

Then

holds in P'. By hypothesis, /6",ff"6 are bounded in L2(RxR3xR3). Moreover,
g%6 is bounded in L2(R x R3 x BR) for all /? > 0, because by our additional
assumption



where these L2 norms are taken over R x M3 x BR. By compactness, there
exists a subsequence {nk} and a function hg € L2((0,T) x BS) such that
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Take R such that supp ij) C BR. We know from Theorem 7.2.1 that

Now diagonalize (by taking rational <5's) to obtain a subsequence independent
of 6. Call it /£ again. By weak convergence.

Therefore

In particular,

Hence

The last term tends to 0 as n —»• oo by (7.46). For the second term we have

because the norm is weakly lower semi-continuous. Hence
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and thus the second term can be made arbitrarily small for 6 small by absolute
continuity. The same argument applies to the first term in (7.47).

Step 2: Assume only i> <E Z>(R3). Let

Thus &(0) = 0, and the triple {/36(f
n}, En, Bn) satisfy (MVM). Moreover,

we clearly have fo(fn) < 8~l so /?«(/") is bounded in L°°((0, oo) x K3 x M3
As before, there exists a subsequence such that

and for fixed T, S,

(through a subsequence) in Ll((0,T) x BS)- The subsequence can be chosen
independently of 6 via diagonalization.

Now since 0s(fn} < /", we have for every bounded measurable A C
(0,oo) xE 6 .

Thus f f , < f a.e. Therefore

For R such that supp ip C BR,
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By the above L1 -convergence, the first term tends to 0 as n —> oo. For the
second term we compute

Thus the second term is less than

This completes Step 2.

Step 3: Let $ 6 C°(R3). Take $m 6 2>(R3) with ||̂ m - V||2 ̂  0; T, S fixe
By Step 2, there is a subsequence such that, for each rn,

Therefore

Choose m first so that the first arid third terms are arbitrarily small. Then
take n large to make the second term small.

Step 4: Let tp be as in the Theorem, il>(v) = o(|v|2), \v\ —> oo. Take CM €
£>(R3), CM = 1 on BM, 0 < CM < 1, for M € N. Apply Step 3 to CA*I/>. By
diagonalization, for fixed T > 0, 5 > 0, there is a subsequence fn such that
for all M 6 N,

inLHCO.T) x Bs). Write
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For fixed M, the second term —* 0 by the strong L1 convergence above. The
third term —> 0 as M —> oo by dominated convergence. For the first term we
have

This completes the proof of Theorem 7.3.1.

COROLLARY Assume in addition that for all T > 0, P > 0,

is relatively weakly
compact in L^(Bp x Bp).

Then for all ifr € P(M3), there exists a subsequence such that

strongly in L2((0,T) x Bs).

Remark: Given this we can pass to the limit in T>' in the approximate equa-
tions for (/", En, Bn) and thus there exists a weak global solution.

Proof. We know that J f " ( - , - , v}^(v) dv -> / / ( - , - , v)ip(v) dv in Ll((Q,T} x
BS) through a subsequence. Passing to yet another subsequence, we can as-
sume that this convergence also holds a.e. on (0,7") x BS- Now we claim that
{(//"(•, -,v)ifj(v) du)2} is relatively weakly compact in L l ( ( ( ) , T ) x BS}- We
use the Dunford Pettis Theorem for this (cf. [5. p. 292]).

For the proof of the claim, we need to show that

(i) {(J fn*l> dv)i} is bounded in Ll((0,T) x £<?);

(ii) for all f > 0, there exists 6 > 0 such that for all A C (0,T) x BS with
\A\ < 6, and for a,ll n.

(i) follows from the hypotheses of the Theorem and the Schwarz inequality.
For (ii): take P = rnax(fi, 5) (where supp ip C BR}. Write At = {x e BS :
( t , x ) € A}. Let A be measurable with \A\ < 62. Then
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Now we assert that \{t 6 (0, T) : \At\ > 6}\ < 6. For if not, we get

which is a contradiction to the size of the measure of A. Therefore

Next,

This integral can be made arbitrarily small in view of \At x BR\ < &\BR\ and
the hypothesis of weak L1 compactness. (The Dunford-Pettis theorem gives
a characterization of weak compactness in Ll via a necessary and sufficient
condition; thus the remaining integral is taken only over a set of small measure,
and so the integral itself can be made arbitrarily small). This proves (ii) and
the weak L1 -compactness.

Now, to finish the proof of the Corollary, we apply the Vitali Convergence
Theorem. Because we are working on a bounded set, we need two ingredients.
They are the pointwise convergence of a subsequence

(which follows from the already established L1-convergence) and the estimate
(7.60). Strong convergence of a subsequence in I/2((0, T) x BS) now follows.

7.4. Completion of the Proof
Several details remain to be treated. These include the regularization of the
initial data, the manner in which the initial data are assumed, and the satis-
faction of the divergence-type constraints in the Maxwell equations. We will
sketch some of these arguments; full details may be found in Theorem 4.1.1 in
[14] and in [3].

We assume that the compatible initial data satisfies the following:
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We find a sequence f$ > 0 such that

Similarly, we approximate in Z/2(M3)-norm the data for E, B by test functions
EQ , BQ. Then for every n and every T > 0. there exists P such that for all
t 6 [0,T], supp fn(t, -, •) C BP x BP. We have

From the approximation of /o in L2 by f g , we have the existence of a non-
negative function (3 <E C°°(IR.) which satisfies (3(0) = 0. limt_00 £~2/?(0 = oo,
and

Hence also

For the existence of such a function (3. see [14], Lemma 4.3.6 where a proof of
G. Schluchtermann is presented.

By the Dunford Pettis Theorem, we need to show that for each e > 0,
there exists 6 > 0 such that for all measurable A C Bp x Bp with \A\ < 6,
and for all n and for all t e [0, T] we have 

Let, e > 0. Choose a > 0 such that ̂  > "^ for all r > a. Let 6 < ̂ \
let Ac. BP x Bp have \A\ < 6. Then

as desired.

Thus the major theorem is established: the existence of a global weak
solution ( f , E , B ) to the initial value problem for the Vlasov-Maxwell System
((7.1) with jf = j). As for the regularity of solutions, one gets by this method
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Moreover, for suitably chosen representatives we have

and the initial values are assumed in this sense. These continuity properties
follow from applications of the Arzela Ascoli theorem and the Rellich com-
pactness theorem. Furthermore, the following quantities are dominated at any
time t > 0 by their initial values: the L2(IR6)-norm of /, and the total energy
(the left-hand side of the second expression in (7.2) with the superscripts of n
dropped), while the L1(R6)-norm of / is invariant.

In the sense of distributions one shows that dtp + Vx • j — 0 and then, using
this and the Maxwell equations themselves, one shows (again in the sense of
distributions) that

In view of the constraints imposed on the initial values, we see that the time
independent divergence type constraints in the Maxwell equations then hold.

The relativistic version of this weak global solvability is also treated in [14].
For the approach developed in this chapter, no higher regularity nor unique-

ness is known at present. An interesting feature is that there is essentially no
difference between the nonrelativistic and relativistic problems in this method.
Yet for smooth solvability, we have seen drastic differences between the two
problems in Chapters 5 and 6.
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Chapter 8

CONVERGENCE OF A PARTICLE METHOD FOR
THE VLASOV-MAXWELL SYSTEM

8.1. Introduction

As we have seen, the Vlasov-Maxwell system models the time evolution of a
collisionless plasma. Here we study a particle simulation for the relativistic
Vlasov-Maxwell system. In one space dimension (and only one momentum
dimension) Maxwell's equations degenerate to Poisson's equation. Particle
simulation of this case has been analyzed by Cottet and Raviart [2], [3] (see also
[18], [19]). Particle methods have also been analyzed for higher-dimensional
problems [6] where Maxwell's equations are replaced by Poisson's equation. A
particle method for a three-dimensional symmetric Vlasov-Poisson system is
treated in [16]. In [13], [14] convergence results in a measure theoretic sense
are presented, while a general introduction to particle methods may be found
in [15].

In order to retain the hyperbolic structure of the problem we consider
the "one and one-half" dimensional model, in which there is only one spatial
variable but two momentum variables. We consider the relativistic version of
this model; hence from [7] we know the global existence of smooth solutions
and, moreover, a uniform (in space and time) bound on the electromagnetic
fields. The analysis presented here is taken from [8] and appears to be the
first to obtain a convergence result for a particle method where the coupling
in the underlying problem involves the Maxwell equations. This algorithm
has been implemented in [9]. Particle methods are good choices for several
reasons. Among these are the natural use of finitely many particles to model a
continuum, and the preservation of the positivity of the phase-space densities.
Related algorithms appear in [10], [11],

Thus we consider the "one and one-half dimensional" Vlasov-Maxwell sys-
tem with one species of charge in a neutralizing background density. We seek
f(t,x,p), E(t,x), B(t,x) (where t > 0; x, /, B are scalar; p = (p\,p%) and
E = (Ei,E2)) such that

203

(RVM)
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where the given neutralizing background density v(x} has compact support
and is chosen so that

When m — 1, v(p) = p in our notation in previous chapters. We make this
change in order to simplify the notation for the algorithm below. We assume
that all data functions are smooth and compactly supported. Note that the
initial condition for E\ is prescribed by f(0,x,v). In fact, since

we have

But by the initial condition for E\ we have

where we define

Note also that

with

and

Here
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so the two equations

are consistent.
Note that the speed of light has been normalized to unity. Henceforth we

will also take the charge q and the rest mass m of each charged particle to be
unity.

In order to get a representation for the fields, we write

so for any h > 0

Similarly,

and hence

and

Define the characteristics X(s,t, x,p) and P(s,t,x,p) by

Now f(t,x,p) is nonnegative and uniformly bounded since for s > 0 we have
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Also, as in Chapter 5 (see also [7]), the map

is measure preserving.

8.2. The Particle Simulation
Let Ax, Ap, e be positive. We will denote A = max{Ax, Ap}. Define

and

6f will give the "shape" of each particle.
We also define a uniform grid on [0, oo) x R :

Note that the time step and the spatial step in this grid are both e, which is
(so far) unrelated to Ax or Ap. Quantities pertaining to this grid are indexed
with Roman letters, e.g., tn and xk. Quantities pertaining to the phase space
grid are indexed with Greek letters, e.g., Ca.

To start the simulation define

and

Let

this will be the charge of a particle whose initial state will be Ca. Let

This set is finite by hypothesis.
Define 5,6e, and Oe by
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for all k € Z and a € Z3. We note that P(t1/2,0, Ca) would not be known in
practice, but we consider this definition of PQ(t1/2) for simplicity. A comment
on the inclusion of these errors appears in the "Summing the Errors" section
below.

To define the simulation iteratively assume that for some n € {0,1,2, • • •}

are known approximations of

for all k 6 1 and a € Z3.
First define

for all t € [t",tn+1]. Next define

for all a; € K, and

for all k e Z. Note that £\ is the exact solution operator. We may compute
this explicitly:

Next for all x € K and t € [tn, £"+1) define

and then (for all fc € Z) define
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and

Again note that the exact field operators are used. Due to the special structure
of ji (constant velocities) we may compute £2 and B explicitly. We need the
value of

Let

Then Z'(T) = 1 - vi(Pa(tn+1/2)) so that

Similarly,



which indicates that the method is momentum preserving as described in [1].
Finally, we define p»(tn+3/2) implicitly by

Although (8.16) is a nonlinear system, it is always explicitly and uniquely solv-
able for •Pn(t"+3/2). We may obtain this solution by solving for |PQ(in+3/2)|
first, and then by substituting this into (8.16) to obtain a pair of linear equa-
tions. Thus one step of the iteration has been completed.

We point out that the above scheme is fully discrete, but that difference
schemes have not been used to solve Maxwell's equations. Rather, Maxwell's
equations are solved exactly for approximate sources (p and j), thus eliminating
one corruption present in most discrete particle methods. This scheme may
be implemented with an operation count on the order of C(Ax)~1(Ajo)~2 per
timestep. This is comparable to the operation count incurred when difference
schemes are used to solve Maxwell's equations.

The main theorem is the following.

THEOREM 8.2.1 Let smooth initial data for (RVM) be given as above and
let e, A, XQ, Pa, E, and B be as above. Let d > 0 be given; then there exists

such that for all e and A such that

we have

for all t in some time interval [0,Te^]. Furthermore,
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Now that E(tn+l,x) and B(tn+l,x) are defined for x € {xk : k € Z}, we
define them for all x G M by linear interpolation. Although definitions (8.14)
and (8.15) could be used for values of x £ {xk : k <5 Z}, this would require
much more computation. We also comment that the linear interpolation may
be written as (for example)
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Comments

(1) From [7] it is known that B is uniformly bounded, so the "stability"
condition

is attainable. Also, if the charge q and rest mass m were not unity, the "sta-
bility" condition would be

The bounds on E-z and B result from an energy identity. Let

Then

Given x and t we integrate this over

and apply Green's Theorem. There results (using i|£|2 + |S2 > |£2J5|)

Now that e(0,y) is integrable over K by assumption. A short computation
shows that

(this is done below), so

Uniform bounds for EI and B now follow from (8.5) and (8.6) when we sub-
stitute i — 0, h = t in those equations.

(2) The function
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is minimal when e = A, in which case

(3) The work [2] establishes the better estimate of

Here the extra power of e is lost due to the fully discrete nature of the scheme.
For convenience we will write

for t e [tn,tn+l) . Now we have

for all t > 0. We will also write

It is shown in [7] that

but we are unable to obtain such an a priori bound for S. Thus convergence
estimates will be made using S, then a posteriori, the convergence estimates
will be used to bound 5. Note that

so for (x,p) G supp /(£, -, •)

and for a e Z3 such that f°(Ca) ^ 0,
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We will also write

Constants C may depend on the Cauchy data but will be independent of t, x,p
and of all numerical parameters fc,n,a, Ax, Ap and e. CT denotes a similar
constant, but one which will be used in estimates which need only hold for
0 < t < T.

8.3. The Field Errors

Consider the errors in the fields at the gridpoint (tn,xk). Prom (8.3)

Thus

where we define

Similarly, from (8.14) and (8.15)

Now by (8.9)
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and

Note that by (8.8)

so

Thus "Quad" is the error in the midpoint rule applied to the function

Note that "Moll" and "Quad" involve only the exact solution, which is
known to be smooth. Thus these two terms are the errors in standard approxi-
mations involving smooth functions, and may be estimated in a fairly standard
way. However, the third term ("Sep") involves the separation of the exact and
approximate characteristics, and is harder arid more intimately linked with
the specific problem. Thus we consider "Sep" first. We will need the following
lemma.

LEMMA 8.3.1 For t < T and x <E R

Proof. Let a € A and let
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and

Note that by (8.18)

and by (8.19)

Hence for r e [0,t] we may define z~1 and z~l by

Note that 2(0) = z(0) and write

where
A = m\n{z(t), z(t)}, B = max{z(t), z(t}},

and

Next, using (8.26) and (8.27) we have for C € [0, A]

It follows from (8.26) that
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so that

Also

Note also that by (8.26) and (8.27)

so from (8.28)

Now using (8.30) for each a we have

so (returning to (8.29)) we have

where
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A crucial part of the argument is a,n estimate of the number of nonzero terms
in the sum

We will need the following lemma.

LEMMA 8.3.2 Given x e R and rj > 0 let

Then

Proof. By the smoothness of the solution to the original problem and by
continuity with respect to initial conditions we know that

Now if a € *4 and (z,q) e C°, then

Hence

and

Next using the measure preserving property of ( X , P ) , we have

where " î" denotes Lebesgue measure on R3. Lemma 8.3.2 now follows.
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Let us return to the proof of Lemma 8.3.1. We take r) — e + £(t) and

Note that

If a € A\A, then

and hence

But supp <5e C (—e, e\ so if a € A\A then

and hence, by Lemma 8.3.2,

Now by (8.31) we have

This is the first estimate asserted in Lemma 8.3.1. The other may be estab-
lished in a highly similar fashion by considering the other set of characteristics.
We omit these estimates.
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With Lemma 8.3.1 established we may now estimate "Sep" easily. From
(8.24)

For the first term note that for all a € A

and by (8.18)

Hence by Lemma 8.3.1

In order to estimate "Quad" we define (for given t",x fc)

and note that by (8.25)

We may write
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where

Now since /° € C2, v 6 C°°, and X, V € C2 we have that

and hence g and drg are C2. Next 0£ 6 W72.00, so by (8.35), h <E W2>°°. Thus
by Taylor's theorem and (8.34)

where D2h denotes the three-by- three matrix of second order partial deriva-
tives of h with respect to x and p.

Let ft and «92 denote any of 0I,0P1,0P2. Now |̂ '| = |5£| < 1/e2 almost
everywhere so

However, at most points this bound may be improved. The most singular term
of 0102/1 is

the second part of which satisfies
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where we abbreviate X = X(r,0, £,p), etc. Hence

To estimate the first part of (8.37), note that for T = 0 or tn and (x, p) 6 Ca,

implies

and hence by (8.32)

Hence for T e {0, tn}

and by Lemma 8.3.2

Thus (with A = Ao U At*) we have

Estimates like (8.39) may be made for all the other terms of Q\&ih, so
combining (8.39) and (8.38) we have



CONVERGENCE OF A PARTICLE METHOD 221

It follows that

and hence by (8.36)

Finally, we estimate "Moll". By Lemma 4.4 of [13] (with p = +00, k = 2,
n = 1) we have

for all T > 0 and z 6 R. Thus from (8.22) we have

Collecting (8.33), (8.41), and (8.42) we have by (8.21)

Clearly, a similar analysis of the other set of characteristics will yield

Now by (8.43) and (8.44)

and similarly

Now we sketch the analogous estimate of E\ — E\, Let a = J / d p so that
p = a - v. Then by (8.1) and (8.12)

As before, we write
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where we define

As in the previous analysis we see that Quada is equal to

so "Quadi" is the error in the midpoint rule applied to the function

In order to estimate "Molh" note first that

where we have used the substitution

So by its definition

Now we again use Lemma 4.4 of [13] and obtain
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For "Quadi" we again have (as in (8.36))

Again |£>2/ii| < Cre~2 holds almost everywhere, but an improved bound is
possible at most points. Let

By Lemma 8.3.2 we have

Moreover we have from (8.40)

Hence

In order to estimate "Sepi", let

and note that if a £ A\A then either

or

In either case



224 THE CAUCHY PROBLEM IN KINETIC THEORY

Now by Lemma 8.3.2

and by definition

where

Hence

Collecting (8.49) - (8.52) we have

We will need estimates of the field errors at all values of x (not just grid-
points), so we use the following lemma.

LEMMA 8.3.3 Let g € (72(R). For any real values a, 6, Ga, G\, with a < b
we. have.

for all x € [a, b].
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Proof. Let x € [a,fc]; then there exists £ & [a,b] such that

which establishes the lemma.

Recall that E and B are defined for x € (x f c ,x f e+1) by linear interpolation.
Let 6 = xk+1 and a = ifc; then use of (8.45) and Lemma 8.3.3 yield

Similarly, using (8.45), (8.46) and (8.53) we have the following corollary.

COROLLARY For all x e K

8.4. The Particle Errors
In this section we estimate

We start by estimating

Toward this goal we define the truncation error to be

and note that since Tx involves only the exact solution (which is smooth), we
have
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Now by (8.10)

Next we obtain an estimate analogous to (8.54) for

Define Q : R2 x R2 -> R2 and Q : 1R2 x R2 -» R2 by

so that the definition (8.16) of PQ(i"+3/2) becomes

Q and Q may be shown to be well defined by explicitly solving (8.55) and
(8.56), as described following (8.16). We also define the truncation error to be

so the error equation is

We will estimate the error by breaking up (8.58) as follows:

LEMMA 8.4.1 For all x, y € M and p, w e M2
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and

Proof. Differentiating (8.55) with respect to x we get

where we abbreviate Q — Q(x,p), E = E(tn+1,x), etc., and Dv denotes a
two-by-two matrix. Hence

Recall that

was assumed in the statement of Theorem 8.2.1, so

and hence

Next by (8.55) we have

Again using the assumption that £\B\ < 1, we have

which completes the proof of Lemma 8.4.1.

LEMMA 8.4.2 For all ( x , p ) e M3
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Proof. By (8.55) and (8.56)

Again since £\B\ < 1 we have

and the lemma follows.

LEMMA 8.4.3 For all a e A

where Tp is defined in (8.57).

Proof. Let a e A. It, follows from Taylor's theorem that

We put

then we also have

Now since

(where E = E(tn+l,X(tn+l,Q,Ca)) etc.), (8.60) and (8.61) yield
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Let us abbreviate

so that by (8.57)

Now by (8.62) and (8.55)

Again since e\B\ < I we have

from which the lemma follows.

Returning to (8.59), we use Lemmas 8.4.1-8.4.3 and obtain

Using |5(f,x)| < C for all t, x and the corollary to Lemma 8.3.3, we have

8.5. Summing the Errors

Estimates (8.54) and (8.63) bound the errors at t = tn+1 and t = tn+3/2 in
terms of errors that occurred earlier. Unfortunately, the bound on the field
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errors required estimates of errors at all times (see (8.20) and Lemma 8.3.1
not just at i1,<3/2,t2,t5/2 j etc. Thus we define

for m = 0, |, 1, |, Note that

Now for every a € A and m € (l, f ,2 , . . .} ,

for each t e [tm-l,tm], so that

By (8.54) we have

and using (8.64) in (8.63) we have

for all a € A and n € {0,1,2,3,... }. It follows from the definition of £m that

for all m 6 {0, i,l,|,... }. Let m e {|, 1, |,2,...} be given and let

and
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Then by (8.65)

Substituting the above values for A\ and AI we get

Hence by (8.64)

and since £ is nondecreasing we have

We comment that if £° and £1/2 were not zero, then (proceeding as above)
(8.66) would be

Thus (8.66) still holds if

Next we use (8.66) to estimate S(t). Note that for all a € A and T < t

so that



it follows from (8.68) and the definition of T£IA that

Finally the validity of the main theorem 8.2.1 follows from (8.67), (8.68)
and the corollary to Lemma 8.3.3.

We conclude with two comments regarding this scheme and related finite
difference schemes. We note that Theorem 8.2.1 provides no approximations
for the density p. To this date we have been unsuccessful in attempts to derive
such estimates. Secondly, in [1] finite differences are used to advance the fields
in time. This is natural since the fields satisfy linear ordinary differential
equations along the characteristics. However, we have been unable to prove
that such schemes converge. The scheme employed in this chapter uses the
exact solution representation, applied to approximate sources. This introduces
one extra order of smoothing, and allows us to close the loop of estimates.

For another approximation (which is related to the Darwin model), see [10]
and [11].
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relativistic case, 106
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for Vlasov-Maxwell, 140,

159, 163
Continuum mechanics,

5 basic equations of, 22
cos 0, definition of,

in rel. Boltzmann eq., 97
Cross section

bounded kernel, 26
differential collision, 6, 95
relativistic case, 95, 100, 104
scattering, 6, 95

Current density, 3-4, 159
convergence of, 192

D

Darwin model, 232
Debye length, 139
Degond, P., 25, 117, 164
De Groot, S. R., 96-97
Derivations,

of Boltzmann eq., 4-5
of Vlasov-Maxwell eq., 2-4

Detailed balancing,
principle of, 5

Dilation identity, 135
DiPerna, R., x, 185-186
Dissipative property, 39, 96
"Dot" spaces, 57-58
Drange, H. B., 54
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see also Cross section
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Temperature, 2
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Ukai, S., x
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V
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nonrel. form, 6
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Vitali convergence thm., 198
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form of, x, 117
relativistic form of, 132, 134
with cylin. sym. data, 117
with spher. sym. data, 117
with small data, 164

rel. case, 135
Vlasov-Maxwell system

1.5 dimensional system, x,
203-204

derivation of, 2-4
field bounds,

see Maxwell fields
form of (nonrelativistic), 3-4,

T
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159, 185
form of (relativistic), 140-141,

163
classical vs. relativistic, 200

iterative solution of, 125,
152458, 165 166

particle densities bounds, 147,
171-173
derivative bounds, 147-148,

171-173
particle method for, 203,

206-209
field errors, 212-225
main theorem, 209
particle errors, 225 229
stability condition for, 210
truncation error, 225-226

small data solvability,
ix, x, 163-164

smooth data thm., 140
weak formulation, 185-187,
weak global existence,

199-200

W

W (subspace), 65
relativistic case, 105

Weak compactness, 185-186,
197-198

Weak convergence, 186, 194
Weak existence (for Vlasov-

Maxwell), 199-200
Weyl's theorem, 53
Wollman, S.. x

X (space), 26

Z

Zero-average kernels
(for Vlasov-Maxwell), 144,

146-147. 150
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